Jing Ding, Lingping Tan, Lingzhi Wu, Jinyu Li, Yong Zhang, Zongshan Shen, Chi Zhang, Chuanjiang Zhao, Li Gao
{"title":"Regulation of tryptophan-indole metabolic pathway in Porphyromonas gingivalis virulence and microbiota dysbiosis in periodontitis.","authors":"Jing Ding, Lingping Tan, Lingzhi Wu, Jinyu Li, Yong Zhang, Zongshan Shen, Chi Zhang, Chuanjiang Zhao, Li Gao","doi":"10.1038/s41522-025-00669-y","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenesis of periodontitis is marked by microbiota dysbiosis and disrupted host responses. Porphyromonas gingivalis is a keystone pathogen of periodontitis which expresses various crucial virulence factors. This study aimed to clarify the role and mechanisms of P. gingivalis tryptophan-indole metabolic pathway in the pathogenesis of periodontitis. This study showed that periodontitis patients exhibited elevated tryptophan metabolism and salivary pathogen abundance. Tryptophanase gene-deficiency altered proteome and metabolome of P. gingivalis, inhibited P. gingivalis virulent factors expression, biofilm growth, hemin utilization, cell adhesion/invasion and pro-inflammation ability. Tryptophan-indole pathway of P. gingivalis stimulated periodontitis biofilm formation and induced oral microbiota dysbiosis. In periodontitis mice, this pathway of P. gingivalis aggravated alveolar bone loss and gingival tissue destruction, causing oral and gut microbiota dysbiosis. This study indicates that the tryptophan-indole pathway serves as a significant regulator of P. gingivalis virulence and oral microbiota dysbiosis, which is also associated with gut dysbiosis.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"37"},"PeriodicalIF":7.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865485/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00669-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogenesis of periodontitis is marked by microbiota dysbiosis and disrupted host responses. Porphyromonas gingivalis is a keystone pathogen of periodontitis which expresses various crucial virulence factors. This study aimed to clarify the role and mechanisms of P. gingivalis tryptophan-indole metabolic pathway in the pathogenesis of periodontitis. This study showed that periodontitis patients exhibited elevated tryptophan metabolism and salivary pathogen abundance. Tryptophanase gene-deficiency altered proteome and metabolome of P. gingivalis, inhibited P. gingivalis virulent factors expression, biofilm growth, hemin utilization, cell adhesion/invasion and pro-inflammation ability. Tryptophan-indole pathway of P. gingivalis stimulated periodontitis biofilm formation and induced oral microbiota dysbiosis. In periodontitis mice, this pathway of P. gingivalis aggravated alveolar bone loss and gingival tissue destruction, causing oral and gut microbiota dysbiosis. This study indicates that the tryptophan-indole pathway serves as a significant regulator of P. gingivalis virulence and oral microbiota dysbiosis, which is also associated with gut dysbiosis.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.