Toolkit for integrating millimeter-sized microfluidic biomedical devices with multiple membranes and electrodes.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Xudong Tao, Tobias E Naegele, Etienne Rognin, Niamh Willis-Fox, Poppy Oldroyd, Chaoqun Dong, Stefany Kissovsky, Antonio Dominguez-Alfaro, Santiago Velasco-Bosom, Ronan Daly, George G Malliaras
{"title":"Toolkit for integrating millimeter-sized microfluidic biomedical devices with multiple membranes and electrodes.","authors":"Xudong Tao, Tobias E Naegele, Etienne Rognin, Niamh Willis-Fox, Poppy Oldroyd, Chaoqun Dong, Stefany Kissovsky, Antonio Dominguez-Alfaro, Santiago Velasco-Bosom, Ronan Daly, George G Malliaras","doi":"10.1038/s41378-025-00871-0","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, microfluidic systems have evolved to incorporate increasingly complex multi-layer and multi-material structures. While conventional 2-dimensional microfluidic systems are typically fabricated with lithographic techniques, the increase in system complexity necessitates a more versatile set of fabrication techniques. Similarly, although 3D printing can easily produce intricate microfluidic geometries, integrating multiple membranes and electrode components remains challenging. This study proposes a toolkit for fabricating free-standing 3-dimensional microfluidic systems for biomedical devices, incorporating flow channels, electrodes, and membranes. The fabrication techniques include molding separation using 3D printed molds, laser-based processing, and component assembly, each achieving micron resolution. Here, we introduce a novel approach to integrate membranes into microfluidics by directly curing elastomer-based microfluidics with the membrane through replica molding, while preserving membrane functionality by effectively removing elastomer residues through reactive ion etching. The resulting membrane-elastomer microfluidic component significantly simplifies the assembly of intricate microfluidic systems, reducing the device size to millimeter dimensions, suitable for implantable applications. The toolkit's versatility is demonstrated by a redox flow iontophoretic drug delivery prototype at the millimeter scale, featuring two electrodes, four membranes, and four microfluidic channels.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"33"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00871-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, microfluidic systems have evolved to incorporate increasingly complex multi-layer and multi-material structures. While conventional 2-dimensional microfluidic systems are typically fabricated with lithographic techniques, the increase in system complexity necessitates a more versatile set of fabrication techniques. Similarly, although 3D printing can easily produce intricate microfluidic geometries, integrating multiple membranes and electrode components remains challenging. This study proposes a toolkit for fabricating free-standing 3-dimensional microfluidic systems for biomedical devices, incorporating flow channels, electrodes, and membranes. The fabrication techniques include molding separation using 3D printed molds, laser-based processing, and component assembly, each achieving micron resolution. Here, we introduce a novel approach to integrate membranes into microfluidics by directly curing elastomer-based microfluidics with the membrane through replica molding, while preserving membrane functionality by effectively removing elastomer residues through reactive ion etching. The resulting membrane-elastomer microfluidic component significantly simplifies the assembly of intricate microfluidic systems, reducing the device size to millimeter dimensions, suitable for implantable applications. The toolkit's versatility is demonstrated by a redox flow iontophoretic drug delivery prototype at the millimeter scale, featuring two electrodes, four membranes, and four microfluidic channels.

工具包集成毫米大小的微流体生物医学设备与多个膜和电极。
近年来,微流控系统已经发展到包含越来越复杂的多层和多材料结构。虽然传统的二维微流体系统通常是用光刻技术制造的,但系统复杂性的增加需要一套更通用的制造技术。同样,尽管3D打印可以很容易地产生复杂的微流体几何形状,但集成多个膜和电极组件仍然具有挑战性。本研究提出了一个用于制造生物医学设备的独立三维微流体系统的工具包,包括流道,电极和膜。制造技术包括使用3D打印模具的成型分离,基于激光的加工和组件组装,每个都达到微米分辨率。在这里,我们介绍了一种将膜集成到微流体中的新方法,通过复制成型直接固化基于弹性体的微流体与膜,同时通过反应离子蚀刻有效去除弹性体残留物来保留膜的功能。由此产生的膜弹性体微流控组件显着简化了复杂的微流控系统的组装,将设备尺寸减小到毫米尺寸,适合植入应用。该工具包的多功能性通过毫米级的氧化还原流离子渗透药物递送原型得到了证明,该原型具有两个电极,四个膜和四个微流体通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信