Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses

IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hans Jakob Wörner, Jean-Pierre Wolf
{"title":"Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses","authors":"Hans Jakob Wörner, Jean-Pierre Wolf","doi":"10.1038/s41570-025-00692-9","DOIUrl":null,"url":null,"abstract":"Ultrafast X-ray spectroscopy provides access to molecular dynamics with unprecedented time resolution, element specificity and site selectivity. These unique properties are optimally suited for investigating intramolecular and intermolecular interactions of molecular species in the liquid phase. This Review summarizes experimental breakthroughs, such as water photolysis and proton transfer on femtosecond and attosecond time scales, dynamics of solvated electrons, charge-transfer processes in metal complexes, multiscale dynamics in haem proteins, proton-transfer dynamics in prebiotic systems and liquid-phase extreme-ultraviolet high-harmonic spectroscopy. An important novelty for ultrafast liquid-phase spectroscopy is the availability of high-brightness ultrafast short-wavelength sources that allowed access to the water window (from 200 eV to 550 eV) and thus to the K-edges of the key elements of organic and biological chemistry: C, N and O. Not only does this Review present experimental examples that demonstrate the unique capabilities of ultrafast short-wavelength spectroscopy in liquids, but it also highlights the broad range of spectroscopic methodologies already applied in this field. Advances in ultrafast short-wavelength sources have enabled major breakthroughs in ultrafast spectroscopy of liquids and solutions. This Review highlights the advances in this field, discusses the new information that can be accessed and presents an outlook on future perspectives.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"9 3","pages":"185-199"},"PeriodicalIF":38.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-025-00692-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast X-ray spectroscopy provides access to molecular dynamics with unprecedented time resolution, element specificity and site selectivity. These unique properties are optimally suited for investigating intramolecular and intermolecular interactions of molecular species in the liquid phase. This Review summarizes experimental breakthroughs, such as water photolysis and proton transfer on femtosecond and attosecond time scales, dynamics of solvated electrons, charge-transfer processes in metal complexes, multiscale dynamics in haem proteins, proton-transfer dynamics in prebiotic systems and liquid-phase extreme-ultraviolet high-harmonic spectroscopy. An important novelty for ultrafast liquid-phase spectroscopy is the availability of high-brightness ultrafast short-wavelength sources that allowed access to the water window (from 200 eV to 550 eV) and thus to the K-edges of the key elements of organic and biological chemistry: C, N and O. Not only does this Review present experimental examples that demonstrate the unique capabilities of ultrafast short-wavelength spectroscopy in liquids, but it also highlights the broad range of spectroscopic methodologies already applied in this field. Advances in ultrafast short-wavelength sources have enabled major breakthroughs in ultrafast spectroscopy of liquids and solutions. This Review highlights the advances in this field, discusses the new information that can be accessed and presents an outlook on future perspectives.

Abstract Image

使用极紫外到软x射线脉冲的液体超快光谱。
超快x射线光谱学提供了前所未有的时间分辨率,元素特异性和位点选择性的分子动力学。这些独特的性质非常适合于研究分子物种在液相中的分子内和分子间相互作用。本文综述了在飞秒和阿秒时间尺度上的水光解和质子转移、溶剂化电子动力学、金属配合物中的电荷转移过程、血红蛋白的多尺度动力学、益生元系统中的质子转移动力学以及液相极紫外高谐波光谱等方面的实验突破。超快液相光谱的一个重要创新是高亮度超快短波光源的可用性,它允许进入水窗口(从200 eV到550 eV),从而进入有机和生物化学关键元素的k边缘:C, N和O.本综述不仅提出了实验实例,证明了液体超快短波光谱学的独特能力,而且还强调了已经在该领域应用的广泛的光谱方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature reviews. Chemistry
Nature reviews. Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
52.80
自引率
0.80%
发文量
88
期刊介绍: Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信