Genome-wide identification and expression analysis of the lipoxygenase gene family in sesame reveals regulatory networks in response to abiotic stress.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tulsi, Ishwar Patidar, Dinakara Rao Ampasala
{"title":"Genome-wide identification and expression analysis of the lipoxygenase gene family in sesame reveals regulatory networks in response to abiotic stress.","authors":"Tulsi, Ishwar Patidar, Dinakara Rao Ampasala","doi":"10.1007/s11033-025-10371-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plant lipoxygenase (Lox) genes, catalyze polyunsaturated fatty acids and play essential roles in plant growth, development, and stress responses. It is extensively studied under various stresses, their role in abiotic stress responses remains unexplored in sesame.</p><p><strong>Methods and results: </strong>This study identified seven Lox genes in sesame divided into two subfamilies: 9-Lox (Silox1, Silox2 and Silox3) are likely involved in pathogen defence and signalling and 13-Lox (Type-I: Silox4 and Type-II: Silox5, Silox6 and Silox7) play crucial roles in jasmonic acid biosynthesis and abiotic stress responses. Silox genes have undergone purifying selection, promoting the stability of gene function and prefer codons with A or T in the third position. The chromosomal distribution, sequence similarity, and subcellular localization, with conserved lipoxygenase domains and motifs were analysed. Promoter regions contained 34 cis-acting regulatory elements (e.g. WRKY, ERF, and bHLH) and 35 transcription factors binding sites (TFBS) linked to light, stress (e.g. MYC, W-box, ERE and STRE), phytohormones, and growth. Differential Gene Expression (DGE) analysis showed Lox1 was upregulated in Drought sensitive (DS) and in Drought tolerant (DT) the Lox1 & Lox3 were upregulated when compared to control. In addition, weighted gene co-expression network analysis (WGCNA) of Lox, showed that blue module is positively correlated with drought tolerance. Fourteen hub genes related to stress were identified, which closely associated with Lox1. Gene ontology and KEGG pathway analyses showed that these genes were linked to linoleic acid metabolism, lipid metabolism, and stress response. Quantitative Real-Time PCR (qRT-PCR) analysis confirmed that Silox genes showed time-varying differential expression under drought, salt and a combined drought-salt stress treatments.</p><p><strong>Conclusion: </strong>This research lays the groundwork for future studies on the role of Lox genes in sesame's growth and stress adaptation.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"266"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10371-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Plant lipoxygenase (Lox) genes, catalyze polyunsaturated fatty acids and play essential roles in plant growth, development, and stress responses. It is extensively studied under various stresses, their role in abiotic stress responses remains unexplored in sesame.

Methods and results: This study identified seven Lox genes in sesame divided into two subfamilies: 9-Lox (Silox1, Silox2 and Silox3) are likely involved in pathogen defence and signalling and 13-Lox (Type-I: Silox4 and Type-II: Silox5, Silox6 and Silox7) play crucial roles in jasmonic acid biosynthesis and abiotic stress responses. Silox genes have undergone purifying selection, promoting the stability of gene function and prefer codons with A or T in the third position. The chromosomal distribution, sequence similarity, and subcellular localization, with conserved lipoxygenase domains and motifs were analysed. Promoter regions contained 34 cis-acting regulatory elements (e.g. WRKY, ERF, and bHLH) and 35 transcription factors binding sites (TFBS) linked to light, stress (e.g. MYC, W-box, ERE and STRE), phytohormones, and growth. Differential Gene Expression (DGE) analysis showed Lox1 was upregulated in Drought sensitive (DS) and in Drought tolerant (DT) the Lox1 & Lox3 were upregulated when compared to control. In addition, weighted gene co-expression network analysis (WGCNA) of Lox, showed that blue module is positively correlated with drought tolerance. Fourteen hub genes related to stress were identified, which closely associated with Lox1. Gene ontology and KEGG pathway analyses showed that these genes were linked to linoleic acid metabolism, lipid metabolism, and stress response. Quantitative Real-Time PCR (qRT-PCR) analysis confirmed that Silox genes showed time-varying differential expression under drought, salt and a combined drought-salt stress treatments.

Conclusion: This research lays the groundwork for future studies on the role of Lox genes in sesame's growth and stress adaptation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信