Free-ranging squirrels perform stable, above-branch landings by balancing using leg force and nonprehensile foot torque.

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-04-01 Epub Date: 2025-04-04 DOI:10.1242/jeb.249934
Sebastian D Lee, Stanley Wang, Duyi Kuang, Eric K Wang, Justin K Yim, Nathaniel H Hunt, Ronald S Fearing, Hannah S Stuart, Robert J Full
{"title":"Free-ranging squirrels perform stable, above-branch landings by balancing using leg force and nonprehensile foot torque.","authors":"Sebastian D Lee, Stanley Wang, Duyi Kuang, Eric K Wang, Justin K Yim, Nathaniel H Hunt, Ronald S Fearing, Hannah S Stuart, Robert J Full","doi":"10.1242/jeb.249934","DOIUrl":null,"url":null,"abstract":"<p><p>For gap-crossing agility, arboreal animals require the ability to stabilize dynamic landings on branches. Despite lacking a prehensile grip, squirrels achieve stable landings using a palmar grasp. We investigated the landing dynamics of free-ranging fox squirrels (Sciurus niger) to uncover strategies for stable, above-branch landings. Using high-speed video and force-torque measurements in the sagittal plane, we quantified landing kinetics across gap distances. Squirrels rapidly managed >80% of the landing energy with their forelimbs. With larger gaps, peak leg force and foot torque increased. Alignment between forelimbs, velocity and force also increased, likely reducing joint moment. We tested control hypotheses based on an extensible pendulum model used in a physical, hopping robot named Salto. Squirrels stabilized off-target landings by modulating leg force and foot torque. To correct for undershooting, squirrels generated pull-up torques and reduced leg force. For overshooting, squirrels generated braking torques and increased leg force. Embodying control principles in leg and foot design can enable stable landings in sparse environments for animals and robots alike, even those lacking prehensile grasps.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249934","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For gap-crossing agility, arboreal animals require the ability to stabilize dynamic landings on branches. Despite lacking a prehensile grip, squirrels achieve stable landings using a palmar grasp. We investigated the landing dynamics of free-ranging fox squirrels (Sciurus niger) to uncover strategies for stable, above-branch landings. Using high-speed video and force-torque measurements in the sagittal plane, we quantified landing kinetics across gap distances. Squirrels rapidly managed >80% of the landing energy with their forelimbs. With larger gaps, peak leg force and foot torque increased. Alignment between forelimbs, velocity and force also increased, likely reducing joint moment. We tested control hypotheses based on an extensible pendulum model used in a physical, hopping robot named Salto. Squirrels stabilized off-target landings by modulating leg force and foot torque. To correct for undershooting, squirrels generated pull-up torques and reduced leg force. For overshooting, squirrels generated braking torques and increased leg force. Embodying control principles in leg and foot design can enable stable landings in sparse environments for animals and robots alike, even those lacking prehensile grasps.

自由放养的松鼠通过使用腿部力量和不可抓握的脚力矩来平衡,稳定地在树枝上着陆。
对于跨越间隙的敏捷性,树栖动物需要在树枝上稳定动态着陆的能力。尽管缺乏可抓握的抓地力,松鼠还是可以用手掌稳定地着陆。我们研究了自由放养的狐松鼠(Sciurus niger)的着陆动力学,以揭示稳定的树枝上着陆策略。利用高速视频和矢状面上的力-扭矩测量,我们量化了跨越间隙距离的着陆动力学。松鼠用前肢迅速获得了80%的着陆能量。随着间隙的增大,腿的峰值力和脚的扭矩增大。前肢之间的对齐,速度和力量增加,可能减少了关节力矩。我们基于一个可扩展的钟摆模型测试了控制假设,该模型用于一个名为Salto的跳跃机器人。松鼠通过调节腿部力量和足部扭矩来稳定脱靶着陆。为了纠正射击不足,松鼠产生了上拉扭矩,减少了腿部的力量。对于超冲,松鼠产生制动扭矩并增加腿部力量。在腿部和足部设计中体现控制原则可以使动物和机器人在稀疏的环境中稳定着陆,即使是那些缺乏抓握能力的动物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信