Natural product as a lead for impairing mitochondrial respiration in cancer cells.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Agnieszka Pyrczak-Felczykowska, Anna-Karina Kaczorowska, Artur Giełdoń, Alicja Braczko, Ryszard T Smoleński, Jędrzej Antosiewicz, Tristan A Reekie, Anna Herman-Antosiewicz
{"title":"Natural product as a lead for impairing mitochondrial respiration in cancer cells.","authors":"Agnieszka Pyrczak-Felczykowska, Anna-Karina Kaczorowska, Artur Giełdoń, Alicja Braczko, Ryszard T Smoleński, Jędrzej Antosiewicz, Tristan A Reekie, Anna Herman-Antosiewicz","doi":"10.1080/14756366.2025.2465575","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of the isoxazole derivative of usnic acid, <b>ISOXUS</b> (formerly known as 2b) on cancer and non-cancerous cell metabolism was investigated. <b>ISOXUS</b> significantly reduced the utilisation of most metabolic substrates that produce NADH or FADH2, mitochondrial electron flow and oxygen consumption rate (OCR) in MCF-7 breast cancer cells in contrast to HB2 normal epithelial cells. Molecular docking revealed that <b>ISOXUS</b> inhibits mitochondrial respiratory chain complex II, which was confirmed experimentally. Disturbance of electron flow in MCF-7 cells resulted in increased reactive oxygen species (ROS) production. They appeared crucial for <b>ISOXUS</b>-induced cancer cell vacuolization and a drop in survival as an antioxidant, α-tocopherol, protected against these processes. These findings indicate that <b>ISOXUS</b> is a metabolic inhibitor that targets mitochondrial complex II in breast cancer cells resulting in diminished ATP production and increased ROS formation which translates into reduced cell viability.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2465575"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2465575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of the isoxazole derivative of usnic acid, ISOXUS (formerly known as 2b) on cancer and non-cancerous cell metabolism was investigated. ISOXUS significantly reduced the utilisation of most metabolic substrates that produce NADH or FADH2, mitochondrial electron flow and oxygen consumption rate (OCR) in MCF-7 breast cancer cells in contrast to HB2 normal epithelial cells. Molecular docking revealed that ISOXUS inhibits mitochondrial respiratory chain complex II, which was confirmed experimentally. Disturbance of electron flow in MCF-7 cells resulted in increased reactive oxygen species (ROS) production. They appeared crucial for ISOXUS-induced cancer cell vacuolization and a drop in survival as an antioxidant, α-tocopherol, protected against these processes. These findings indicate that ISOXUS is a metabolic inhibitor that targets mitochondrial complex II in breast cancer cells resulting in diminished ATP production and increased ROS formation which translates into reduced cell viability.

天然产物作为损害线粒体呼吸在癌细胞中的铅。
研究了usnic酸的异恶唑衍生物ISOXUS(以前称为2b)对癌细胞和非癌细胞代谢的影响。与HB2正常上皮细胞相比,ISOXUS显著降低了MCF-7乳腺癌细胞中产生NADH或FADH2的大多数代谢底物的利用率、线粒体电子流和耗氧率(OCR)。分子对接发现,ISOXUS抑制线粒体呼吸链复合体II,实验证实。MCF-7细胞中电子流的干扰导致活性氧(ROS)的产生增加。它们似乎对isoxus诱导的癌细胞空泡化和存活率下降至关重要,因为抗氧化剂α-生育酚可以防止这些过程。这些发现表明,ISOXUS是一种代谢抑制剂,针对乳腺癌细胞中的线粒体复合体II,导致ATP产生减少和ROS形成增加,从而降低细胞活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信