Noa Simchoni, Shogo Koide, Maryel Likhite, Yoshihiko Kuchitsu, Senkottuvelan Kadirvel, Christopher S Law, Brett M Elicker, Santosh Kurra, Margaret Mei-Kay Wong, Bo Yuan, Alice Grossi, Ronald M Laxer, Stefano Volpi, Dilan Dissanayake, Tomohiko Taguchi, David B Beck, Tiphanie P Vogel, Anthony K Shum
{"title":"The common HAQ STING allele prevents clinical penetrance of COPA syndrome.","authors":"Noa Simchoni, Shogo Koide, Maryel Likhite, Yoshihiko Kuchitsu, Senkottuvelan Kadirvel, Christopher S Law, Brett M Elicker, Santosh Kurra, Margaret Mei-Kay Wong, Bo Yuan, Alice Grossi, Ronald M Laxer, Stefano Volpi, Dilan Dissanayake, Tomohiko Taguchi, David B Beck, Tiphanie P Vogel, Anthony K Shum","doi":"10.1084/jem.20242179","DOIUrl":null,"url":null,"abstract":"<p><p>COPA syndrome, an autosomal-dominant inborn error of immunity, is nonpenetrant in ∼20% of individuals, with no known mediators of protection. Recent studies implicate STING in the pathogenesis of COPA syndrome. We show that the common HAQ STING allele mediates complete clinical protection. We sequenced 35 individuals with COPA mutations, 26 affected patients and 9 unaffected carriers, finding HAQ STING co-segregation with clinical nonpenetrance. Exome sequencing identified only the mutations comprising HAQ STING as variants shared by unaffected carriers and absent in patients. Experimentally, we found that HAQ STING acts dominantly to dampen COPA-dependent STING signaling. Expressing HAQ STING in patient cells rescued the molecular phenotype of COPA syndrome. Our study is the first report of a common and well-tolerated allele mediating complete clinical protection from a severe genetic disorder. Our findings redefine the diagnostic criteria for COPA syndrome, expose functional differences among STING alleles with broad scientific and clinical implications, and reveal a potential universal gene therapy approach for patients.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 4","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20242179","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
COPA syndrome, an autosomal-dominant inborn error of immunity, is nonpenetrant in ∼20% of individuals, with no known mediators of protection. Recent studies implicate STING in the pathogenesis of COPA syndrome. We show that the common HAQ STING allele mediates complete clinical protection. We sequenced 35 individuals with COPA mutations, 26 affected patients and 9 unaffected carriers, finding HAQ STING co-segregation with clinical nonpenetrance. Exome sequencing identified only the mutations comprising HAQ STING as variants shared by unaffected carriers and absent in patients. Experimentally, we found that HAQ STING acts dominantly to dampen COPA-dependent STING signaling. Expressing HAQ STING in patient cells rescued the molecular phenotype of COPA syndrome. Our study is the first report of a common and well-tolerated allele mediating complete clinical protection from a severe genetic disorder. Our findings redefine the diagnostic criteria for COPA syndrome, expose functional differences among STING alleles with broad scientific and clinical implications, and reveal a potential universal gene therapy approach for patients.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.