Thermal transformations and dissociations in polycrystalline CO2hydrates.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Xinheng Li, Yongxiao Qu, Yuan Li, Xiaoyu Shi, Kaibin Xiong, Zhisen Zhang, Jianyang Wu
{"title":"Thermal transformations and dissociations in polycrystalline CO<sub>2</sub>hydrates.","authors":"Xinheng Li, Yongxiao Qu, Yuan Li, Xiaoyu Shi, Kaibin Xiong, Zhisen Zhang, Jianyang Wu","doi":"10.1088/1361-648X/adbaa7","DOIUrl":null,"url":null,"abstract":"<p><p>CO<sub>2</sub>hydrates show promising application in CO<sub>2</sub>sequestration, as well as natural gas recovering from hydrate-bearing sediments, in which the stability of CO<sub>2</sub>hydrates plays a vital role in these practical applications. Here, we report the thermal dissociation and cage transformations in polycrystalline CO<sub>2</sub>hydrates via high-throughput molecular dynamics simulations and machine learning (ML). It is revealed that the melting points of polycrystalline CO<sub>2</sub>hydrates (PCO2H) are dictated by the microstructural cages, in which the 5<sup>12</sup>, 5<sup>12</sup>6<sup>2</sup>and 4<sup>1</sup>5<sup>10</sup>6<sup>3</sup>cages predominate. Upon heating, PCO2H shows reduction trend in the number of clathrate cages, while accompanied by large-scale cage reformations via 28 types of reversible/irreversible cage transformations. The cage transformations are achieved via mechanisms of removing, inserting and rotating water molecules, in which water molecules in clathrate cages substantially exchange. Cage transformations involve 5<sup>12</sup>, 5<sup>12</sup>6<sup>2</sup>, 4<sup>1</sup>5<sup>10</sup>6<sup>3</sup>, and 4<sup>1</sup>5<sup>10</sup>6<sup>2</sup>are pronouncedly frequent, acting as pivotal intermediate pathway in the thermal dissociation of PCO2H. The study provides a clear roadmap on the thermally-induced cage transformations and their mechanisms, and establishes ML frameworks to predict the dissociation behaviors in terms of melting points and melting dynamics.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adbaa7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

CO2hydrates show promising application in CO2sequestration, as well as natural gas recovering from hydrate-bearing sediments, in which the stability of CO2hydrates plays a vital role in these practical applications. Here, we report the thermal dissociation and cage transformations in polycrystalline CO2hydrates via high-throughput molecular dynamics simulations and machine learning (ML). It is revealed that the melting points of polycrystalline CO2hydrates (PCO2H) are dictated by the microstructural cages, in which the 512, 51262and 4151063cages predominate. Upon heating, PCO2H shows reduction trend in the number of clathrate cages, while accompanied by large-scale cage reformations via 28 types of reversible/irreversible cage transformations. The cage transformations are achieved via mechanisms of removing, inserting and rotating water molecules, in which water molecules in clathrate cages substantially exchange. Cage transformations involve 512, 51262, 4151063, and 4151062are pronouncedly frequent, acting as pivotal intermediate pathway in the thermal dissociation of PCO2H. The study provides a clear roadmap on the thermally-induced cage transformations and their mechanisms, and establishes ML frameworks to predict the dissociation behaviors in terms of melting points and melting dynamics.

二氧化碳水合物在二氧化碳封存以及从含水沉积物中回收天然气方面有着广阔的应用前景,其中二氧化碳水合物的稳定性在这些实际应用中起着至关重要的作用。在此,我们通过分子动力学(MD)模拟和机器学习(ML)报告了多晶二氧化碳水合物的热解离和笼型转化。研究发现,多晶二氧化碳水合物(PCO2H)的熔点由微结构笼决定,其中以 512、51262 和 4151063 笼为主。加热时,PCO2H 的凝块笼数量呈减少趋势,同时通过 28 种可逆/不可逆的笼型转化,出现大规模的笼型转化。笼型转化是通过水分子的移除、插入和旋转机制实现的,在这些机制中,凝块笼中的水分子发生了实质性交换。其中涉及 512、51262、4151063 和 4151062 的笼式转化明显频繁,成为 PCO2H 热解离的关键中间途径。该研究为热诱导的笼型转化及其机制提供了清晰的路线图,并建立了从熔点和熔化动力学角度预测解离行为的 ML 框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信