Tumor-specific CD8+ T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes.

IF 10.3 1区 医学 Q1 IMMUNOLOGY
Elizabeth M Zawidzka, Luca Biavati, Amy Thomas, Claudio Zanettini, Luigi Marchionni, Robert Leone, Ivan Borrello
{"title":"Tumor-specific CD8<sup>+</sup> T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes.","authors":"Elizabeth M Zawidzka, Luca Biavati, Amy Thomas, Claudio Zanettini, Luigi Marchionni, Robert Leone, Ivan Borrello","doi":"10.1136/jitc-2024-009367","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor-infiltrating lymphocytes (TILs) with significant clinical results. The bone marrow (BM) is an immunological niche housing T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies.</p><p><strong>Methods: </strong>We used the murine B16 melanoma model examining both the endogenous OVA-specific T cell response using an OVA-specific tetramer or examining the OVA-specific response with OVA-specific transgenic CD8+ (OT-1) T cells. Specifically, we compared baseline intrinsic properties of TILs or BM T cells from tumor-bearing mice and their changes following adoptive transfer in the tumor and bone marrow (as well as other compartments when indicated).</p><p><strong>Results: </strong>In tumor-bearing mice, endogenous tumor-specific T cells could be detected in the BM early in the course of tumor progression and possessed a more stem-cell-like and memory phenotype in an unsupervised cluster analysis compared with TILs which appeared more exhausted. The BM and tumor microenvironments significantly impact the fate of T cells. Naïve OT-1 transferred T cells acquired an exhausted phenotype in the tumor but maintained a more memory-like phenotype in the BM with tumor progression. Importantly, in a competitive transfer experiment, BM T cells infiltrated the tumor more efficiently than TILs, displayed a higher polyfunctionality with interleukin-2, interferon-γ, tumor necrosis factor-α production and showed greater persistence compared with TILs.</p><p><strong>Conclusions: </strong>T cells from the BM appear superior to TILs as a source of cells for cellular therapy. They possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. These data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 2","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-009367","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor-infiltrating lymphocytes (TILs) with significant clinical results. The bone marrow (BM) is an immunological niche housing T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies.

Methods: We used the murine B16 melanoma model examining both the endogenous OVA-specific T cell response using an OVA-specific tetramer or examining the OVA-specific response with OVA-specific transgenic CD8+ (OT-1) T cells. Specifically, we compared baseline intrinsic properties of TILs or BM T cells from tumor-bearing mice and their changes following adoptive transfer in the tumor and bone marrow (as well as other compartments when indicated).

Results: In tumor-bearing mice, endogenous tumor-specific T cells could be detected in the BM early in the course of tumor progression and possessed a more stem-cell-like and memory phenotype in an unsupervised cluster analysis compared with TILs which appeared more exhausted. The BM and tumor microenvironments significantly impact the fate of T cells. Naïve OT-1 transferred T cells acquired an exhausted phenotype in the tumor but maintained a more memory-like phenotype in the BM with tumor progression. Importantly, in a competitive transfer experiment, BM T cells infiltrated the tumor more efficiently than TILs, displayed a higher polyfunctionality with interleukin-2, interferon-γ, tumor necrosis factor-α production and showed greater persistence compared with TILs.

Conclusions: T cells from the BM appear superior to TILs as a source of cells for cellular therapy. They possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. These data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal for Immunotherapy of Cancer
Journal for Immunotherapy of Cancer Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
17.70
自引率
4.60%
发文量
522
审稿时长
18 weeks
期刊介绍: The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信