Secretome from HMGB1 Box A-over-expressing Adipose-derived Stem Cells Shows Potential for Skin Rejuvenation by Senescence Reversal in PM2.5-induced Senescence Cells via Stem Cell Induction.
Zin Zin Ei, Apiwat Mutirangura, Pithi Chanvorachote
{"title":"Secretome from HMGB1 Box A-over-expressing Adipose-derived Stem Cells Shows Potential for Skin Rejuvenation by Senescence Reversal in PM2.5-induced Senescence Cells <i>via</i> Stem Cell Induction.","authors":"Zin Zin Ei, Apiwat Mutirangura, Pithi Chanvorachote","doi":"10.21873/invivo.13881","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Exposure to particulate matter 2.5 (PM2.5) can lead to cellular senescence by generating reactive oxygen species (ROS). Box A, a DNA-binding domain found in HMGB1, is known for its ability to counteract aging characteristics. This study explored whether BoxA-induced adipose-derived stem cells secretome (BoxA-SC) can reverse senescence in DP and HWPc cells.</p><p><strong>Materials and methods: </strong>The stemness characteristics and reversal of senescence by BoxA-SC in PM2.5-induced DP and HWPc cells were assessed at the mRNA level using RT-qPCR and at the protein level using immunofluorescence analysis.</p><p><strong>Results: </strong>BoxA-SC (1:20) treatment for 48 h induced stemness and reversed PM2.5-induced cell senescence in DP and HWPc cells. BoxA-SC significantly reduced senescence markers, including SA-β-gal staining, and decreased mRNA levels of senescence-associated secretory phenotype factors (IL1α, IL7, CXCL1) in PM2.5-induced senescent cells. DP and HWPc cells exposed to PM2.5 exhibited an increase in p21 and p16 mRNA and protein levels, which was reversed by BoxA-SC. BoxA-SC reduced p21 and p16 in DP senescent cells approximately 3- and 2-fold, respectively, compared to untreated senescent cells.</p><p><strong>Conclusion: </strong>BoxA-SC can potentially reverse cellular senescence, highlighting the therapeutic potential of stem cells in skin rejuvenation and anti-aging treatments.</p>","PeriodicalId":13364,"journal":{"name":"In vivo","volume":"39 2","pages":"766-777"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vivo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/invivo.13881","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Exposure to particulate matter 2.5 (PM2.5) can lead to cellular senescence by generating reactive oxygen species (ROS). Box A, a DNA-binding domain found in HMGB1, is known for its ability to counteract aging characteristics. This study explored whether BoxA-induced adipose-derived stem cells secretome (BoxA-SC) can reverse senescence in DP and HWPc cells.
Materials and methods: The stemness characteristics and reversal of senescence by BoxA-SC in PM2.5-induced DP and HWPc cells were assessed at the mRNA level using RT-qPCR and at the protein level using immunofluorescence analysis.
Results: BoxA-SC (1:20) treatment for 48 h induced stemness and reversed PM2.5-induced cell senescence in DP and HWPc cells. BoxA-SC significantly reduced senescence markers, including SA-β-gal staining, and decreased mRNA levels of senescence-associated secretory phenotype factors (IL1α, IL7, CXCL1) in PM2.5-induced senescent cells. DP and HWPc cells exposed to PM2.5 exhibited an increase in p21 and p16 mRNA and protein levels, which was reversed by BoxA-SC. BoxA-SC reduced p21 and p16 in DP senescent cells approximately 3- and 2-fold, respectively, compared to untreated senescent cells.
Conclusion: BoxA-SC can potentially reverse cellular senescence, highlighting the therapeutic potential of stem cells in skin rejuvenation and anti-aging treatments.
期刊介绍:
IN VIVO is an international peer-reviewed journal designed to bring together original high quality works and reviews on experimental and clinical biomedical research within the frames of physiology, pathology and disease management.
The topics of IN VIVO include: 1. Experimental development and application of new diagnostic and therapeutic procedures; 2. Pharmacological and toxicological evaluation of new drugs, drug combinations and drug delivery systems; 3. Clinical trials; 4. Development and characterization of models of biomedical research; 5. Cancer diagnosis and treatment; 6. Immunotherapy and vaccines; 7. Radiotherapy, Imaging; 8. Tissue engineering, Regenerative medicine; 9. Carcinogenesis.