Characterization of a cytokinin-binding protein locus in Mycobacterium tuberculosis.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Jin Hee Yoo, Cristina Santarossa, Audrey Thomas, Damian Ekiert, K Heran Darwin
{"title":"Characterization of a cytokinin-binding protein locus in <i>Mycobacterium tuberculosis</i>.","authors":"Jin Hee Yoo, Cristina Santarossa, Audrey Thomas, Damian Ekiert, K Heran Darwin","doi":"10.1128/jb.00003-25","DOIUrl":null,"url":null,"abstract":"<p><p>Cytokinins are adenine-based hormones that have been well-characterized in plants but are also made by bacteria, including the human-exclusive pathogen <i>Mycobacterium tuberculosis</i>. Like plants, <i>M. tuberculosis</i> uses cytokinins to regulate gene expression. We previously established that cytokinin overaccumulation in <i>M. tuberculosis</i> results in a buildup of aldehydes produced during cytokinin breakdown. In plants, dedicated enzymes called cytokinin oxidases convert cytokinins into adenine and various aldehydes. Proteasome degradation-deficient <i>M. tuberculosis</i>, which cannot degrade the cytokinin-producing enzyme Log, accumulates several cytokinins and at least one cytokinin-associated aldehyde, resulting in increased sensitivity to nitric oxide and copper. We therefore hypothesized that <i>M. tuberculosis</i> encodes one or more cytokinin oxidases, and disruption of this enzyme might restore resistance to nitric oxide and copper in a proteasome-defective strain. Using a homology-based search, we identified Rv3719 as a protein with high similarity to a plant cytokinin oxidase. Deletion of this gene, however, did not restore nitric oxide or copper resistance to a degradation-defective mutant. Instead, we observed increased copper sensitivity when Rv3719 was deleted from either wild-type or proteasome-defective strains. Finally, we characterized Rv3718c, a protein encoded adjacent to Rv3719, and found that it bound a cytokinin with high specificity. Collectively, these data support a role for cytokinin activity in <i>M. tuberculosis</i> physiology that remains to be further elucidated.IMPORTANCENumerous bacterial species encode cytokinin-producing enzymes, the functions of which are almost completely unknown. This work contributes new knowledge to the cytokinin field for bacteria and reveals further conservation of cytokinin-associated proteins between plants and prokaryotes.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0000325"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00003-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytokinins are adenine-based hormones that have been well-characterized in plants but are also made by bacteria, including the human-exclusive pathogen Mycobacterium tuberculosis. Like plants, M. tuberculosis uses cytokinins to regulate gene expression. We previously established that cytokinin overaccumulation in M. tuberculosis results in a buildup of aldehydes produced during cytokinin breakdown. In plants, dedicated enzymes called cytokinin oxidases convert cytokinins into adenine and various aldehydes. Proteasome degradation-deficient M. tuberculosis, which cannot degrade the cytokinin-producing enzyme Log, accumulates several cytokinins and at least one cytokinin-associated aldehyde, resulting in increased sensitivity to nitric oxide and copper. We therefore hypothesized that M. tuberculosis encodes one or more cytokinin oxidases, and disruption of this enzyme might restore resistance to nitric oxide and copper in a proteasome-defective strain. Using a homology-based search, we identified Rv3719 as a protein with high similarity to a plant cytokinin oxidase. Deletion of this gene, however, did not restore nitric oxide or copper resistance to a degradation-defective mutant. Instead, we observed increased copper sensitivity when Rv3719 was deleted from either wild-type or proteasome-defective strains. Finally, we characterized Rv3718c, a protein encoded adjacent to Rv3719, and found that it bound a cytokinin with high specificity. Collectively, these data support a role for cytokinin activity in M. tuberculosis physiology that remains to be further elucidated.IMPORTANCENumerous bacterial species encode cytokinin-producing enzymes, the functions of which are almost completely unknown. This work contributes new knowledge to the cytokinin field for bacteria and reveals further conservation of cytokinin-associated proteins between plants and prokaryotes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信