Disruption of GPSM1/CSF1 signaling reprograms tumor-associated macrophages to overcome anti-PD-1 resistance in colorectal cancer.

IF 10.3 1区 医学 Q1 IMMUNOLOGY
Yang Chen, Huiqing Jia, Xiangyan Zhang, Han Zhao, Yujing Xiao, Na Li, Yifan Yao, Xiaoming Xing
{"title":"Disruption of GPSM1/CSF1 signaling reprograms tumor-associated macrophages to overcome anti-PD-1 resistance in colorectal cancer.","authors":"Yang Chen, Huiqing Jia, Xiangyan Zhang, Han Zhao, Yujing Xiao, Na Li, Yifan Yao, Xiaoming Xing","doi":"10.1136/jitc-2024-010826","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immune checkpoint blockade (ICB) therapies, particularly anti-PD-1, benefit only a limited subset of colorectal cancer (CRC) patients. G-protein signaling modulator 1 (GPSM1) is implicated in immunity and oncology, yet its role in regulating the CRC tumor microenvironment (TME) and contributing to anti-PD-1 resistance remains poorly understood.</p><p><strong>Methods: </strong>We employed single-cell RNA sequencing and multiplex immunofluorescence on tumor samples from anti-PD-1-resistant CRC patients to evaluate GPSM1 expression and its impact on macrophage polarization. An orthotopic CRC xenograft model in C57BL/6 mice was used to assess the role of GPSM1 in vivo. An in vitro co-culture system, alongside mass cytometry and flow cytometry, explored GPSM1's biological functions within the TME. We further used ChIP-PCR, mass spectrometry, and co-immunoprecipitation to elucidate the mechanisms regulating GPSM1 activity.</p><p><strong>Results: </strong>GPSM1 expression was significantly elevated in anti-PD-1-resistant CRC tissues. Enhanced GPSM1 levels promoted anti-PD-1 resistance by driving macrophage polarization toward an immunosuppressive M2 phenotype, facilitating their infiltration into the TME. We identified the deubiquitinase USP9X as a key factor preventing GPSM1 degradation through K63-polyubiquitination. This stabilization of GPSM1 led to MEIS3 nuclear translocation, activating macrophage colony-stimulating factor expression. Importantly, ruxolitinib emerged as a promising GPSM1-targeting candidate, demonstrating improved efficacy in combination with anti-PD-1 therapy in both microsatellite instability-high and microsatellite stable CRC models.</p><p><strong>Conclusions: </strong>Our findings highlight the pivotal role of GPSM1-driven M2 macrophage infiltration in mediating anti-PD-1 resistance in CRC. Targeting GPSM1 offers a novel therapeutic strategy to enhance ICB efficacy, potentially broadening the patient population that may benefit from these therapies.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 2","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010826","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Immune checkpoint blockade (ICB) therapies, particularly anti-PD-1, benefit only a limited subset of colorectal cancer (CRC) patients. G-protein signaling modulator 1 (GPSM1) is implicated in immunity and oncology, yet its role in regulating the CRC tumor microenvironment (TME) and contributing to anti-PD-1 resistance remains poorly understood.

Methods: We employed single-cell RNA sequencing and multiplex immunofluorescence on tumor samples from anti-PD-1-resistant CRC patients to evaluate GPSM1 expression and its impact on macrophage polarization. An orthotopic CRC xenograft model in C57BL/6 mice was used to assess the role of GPSM1 in vivo. An in vitro co-culture system, alongside mass cytometry and flow cytometry, explored GPSM1's biological functions within the TME. We further used ChIP-PCR, mass spectrometry, and co-immunoprecipitation to elucidate the mechanisms regulating GPSM1 activity.

Results: GPSM1 expression was significantly elevated in anti-PD-1-resistant CRC tissues. Enhanced GPSM1 levels promoted anti-PD-1 resistance by driving macrophage polarization toward an immunosuppressive M2 phenotype, facilitating their infiltration into the TME. We identified the deubiquitinase USP9X as a key factor preventing GPSM1 degradation through K63-polyubiquitination. This stabilization of GPSM1 led to MEIS3 nuclear translocation, activating macrophage colony-stimulating factor expression. Importantly, ruxolitinib emerged as a promising GPSM1-targeting candidate, demonstrating improved efficacy in combination with anti-PD-1 therapy in both microsatellite instability-high and microsatellite stable CRC models.

Conclusions: Our findings highlight the pivotal role of GPSM1-driven M2 macrophage infiltration in mediating anti-PD-1 resistance in CRC. Targeting GPSM1 offers a novel therapeutic strategy to enhance ICB efficacy, potentially broadening the patient population that may benefit from these therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal for Immunotherapy of Cancer
Journal for Immunotherapy of Cancer Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
17.70
自引率
4.60%
发文量
522
审稿时长
18 weeks
期刊介绍: The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信