{"title":"Anti-inflammatory and antioxidant effects of baicalein: targeting Nrf2, and NFĸB in neurodegenerative disease.","authors":"Omkar Kumar Kuwar, Nileshwar Kalia","doi":"10.1007/s10787-025-01698-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, are characterized by progressive loss of neurons in the brain regions, including the hippocampus, cortex, substantia nigra, and striatum. Multiple pathological mechanisms drive this neuronal loss, including oxidative stress, chronic inflammation, mitochondrial dysfunction, protein misfolding, and excitotoxicity. Recent evidence suggests that these processes are intricately linked to the dysregulation of key signalling pathways, such as the IĸB/NFĸB, and KEAP1/Nrf2 pathways, which play central roles in neuroinflammation, oxidative stress, and mitochondrial functions, respectively. At present, no cure exists for neurodegenerative disorders, and available medications focus solely on symptomatic management. While these treatments provide temporary relief, their long-term use is often associated with adverse health effects. In this context, natural Phytoactive constituents like Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis, have gained attention for their promising therapeutic potential. Baicalein has been shown to modulate the IĸB/NFĸB, and KEAP1/Nrf2 pathways, thereby mitigating neuroinflammation and oxidative stress while supporting mitochondrial health. It exerts anti-inflammatory effects by inhibiting NFĸB activation, thereby reducing the production of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and NLRP3 inflammasome, and enzymes like COX-2, LOX, and iNOS, which are essential for innate and adaptive immune responses. Simultaneously, baicalein enhances the Nrf2 activation, promoting the expression of antioxidant enzymes like HO-1, NQO1, GPx, and SOD, thus countering oxidative stress. These findings highlight the potential of baiclalein as a complementary approach for managing neurodegenerative diseases, offering a safer and more holistic alternative to conventional therapies.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01698-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, are characterized by progressive loss of neurons in the brain regions, including the hippocampus, cortex, substantia nigra, and striatum. Multiple pathological mechanisms drive this neuronal loss, including oxidative stress, chronic inflammation, mitochondrial dysfunction, protein misfolding, and excitotoxicity. Recent evidence suggests that these processes are intricately linked to the dysregulation of key signalling pathways, such as the IĸB/NFĸB, and KEAP1/Nrf2 pathways, which play central roles in neuroinflammation, oxidative stress, and mitochondrial functions, respectively. At present, no cure exists for neurodegenerative disorders, and available medications focus solely on symptomatic management. While these treatments provide temporary relief, their long-term use is often associated with adverse health effects. In this context, natural Phytoactive constituents like Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis, have gained attention for their promising therapeutic potential. Baicalein has been shown to modulate the IĸB/NFĸB, and KEAP1/Nrf2 pathways, thereby mitigating neuroinflammation and oxidative stress while supporting mitochondrial health. It exerts anti-inflammatory effects by inhibiting NFĸB activation, thereby reducing the production of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and NLRP3 inflammasome, and enzymes like COX-2, LOX, and iNOS, which are essential for innate and adaptive immune responses. Simultaneously, baicalein enhances the Nrf2 activation, promoting the expression of antioxidant enzymes like HO-1, NQO1, GPx, and SOD, thus countering oxidative stress. These findings highlight the potential of baiclalein as a complementary approach for managing neurodegenerative diseases, offering a safer and more holistic alternative to conventional therapies.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]