Anti-inflammatory and antioxidant effects of baicalein: targeting Nrf2, and NFĸB in neurodegenerative disease.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Omkar Kumar Kuwar, Nileshwar Kalia
{"title":"Anti-inflammatory and antioxidant effects of baicalein: targeting Nrf2, and NFĸB in neurodegenerative disease.","authors":"Omkar Kumar Kuwar, Nileshwar Kalia","doi":"10.1007/s10787-025-01698-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, are characterized by progressive loss of neurons in the brain regions, including the hippocampus, cortex, substantia nigra, and striatum. Multiple pathological mechanisms drive this neuronal loss, including oxidative stress, chronic inflammation, mitochondrial dysfunction, protein misfolding, and excitotoxicity. Recent evidence suggests that these processes are intricately linked to the dysregulation of key signalling pathways, such as the IĸB/NFĸB, and KEAP1/Nrf2 pathways, which play central roles in neuroinflammation, oxidative stress, and mitochondrial functions, respectively. At present, no cure exists for neurodegenerative disorders, and available medications focus solely on symptomatic management. While these treatments provide temporary relief, their long-term use is often associated with adverse health effects. In this context, natural Phytoactive constituents like Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis, have gained attention for their promising therapeutic potential. Baicalein has been shown to modulate the IĸB/NFĸB, and KEAP1/Nrf2 pathways, thereby mitigating neuroinflammation and oxidative stress while supporting mitochondrial health. It exerts anti-inflammatory effects by inhibiting NFĸB activation, thereby reducing the production of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and NLRP3 inflammasome, and enzymes like COX-2, LOX, and iNOS, which are essential for innate and adaptive immune responses. Simultaneously, baicalein enhances the Nrf2 activation, promoting the expression of antioxidant enzymes like HO-1, NQO1, GPx, and SOD, thus countering oxidative stress. These findings highlight the potential of baiclalein as a complementary approach for managing neurodegenerative diseases, offering a safer and more holistic alternative to conventional therapies.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01698-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, are characterized by progressive loss of neurons in the brain regions, including the hippocampus, cortex, substantia nigra, and striatum. Multiple pathological mechanisms drive this neuronal loss, including oxidative stress, chronic inflammation, mitochondrial dysfunction, protein misfolding, and excitotoxicity. Recent evidence suggests that these processes are intricately linked to the dysregulation of key signalling pathways, such as the IĸB/NFĸB, and KEAP1/Nrf2 pathways, which play central roles in neuroinflammation, oxidative stress, and mitochondrial functions, respectively. At present, no cure exists for neurodegenerative disorders, and available medications focus solely on symptomatic management. While these treatments provide temporary relief, their long-term use is often associated with adverse health effects. In this context, natural Phytoactive constituents like Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis, have gained attention for their promising therapeutic potential. Baicalein has been shown to modulate the IĸB/NFĸB, and KEAP1/Nrf2 pathways, thereby mitigating neuroinflammation and oxidative stress while supporting mitochondrial health. It exerts anti-inflammatory effects by inhibiting NFĸB activation, thereby reducing the production of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and NLRP3 inflammasome, and enzymes like COX-2, LOX, and iNOS, which are essential for innate and adaptive immune responses. Simultaneously, baicalein enhances the Nrf2 activation, promoting the expression of antioxidant enzymes like HO-1, NQO1, GPx, and SOD, thus countering oxidative stress. These findings highlight the potential of baiclalein as a complementary approach for managing neurodegenerative diseases, offering a safer and more holistic alternative to conventional therapies.

阿尔茨海默病、帕金森病和亨廷顿病等神经退行性疾病的特征是大脑区域(包括海马、皮层、黑质和纹状体)的神经元逐渐丧失。导致神经元丧失的病理机制有多种,包括氧化应激、慢性炎症、线粒体功能障碍、蛋白质错误折叠和兴奋毒性。最新证据表明,这些过程与关键信号通路的失调密切相关,如 IĸB/NFĸB 和 KEAP1/Nrf2 通路,它们分别在神经炎症、氧化应激和线粒体功能中发挥核心作用。目前,神经退行性疾病还没有治愈的方法,现有的药物也只侧重于对症治疗。虽然这些治疗方法能暂时缓解症状,但长期使用往往会对健康造成不良影响。在这种情况下,从黄芩中提取的具有生物活性的黄酮类化合物--黄芩素等天然植物活性成分,因其良好的治疗潜力而备受关注。研究表明,黄芩素能调节 IĸB/NFĸB 和 KEAP1/Nrf2 通路,从而减轻神经炎症和氧化应激,同时支持线粒体健康。它通过抑制 NFĸB 的活化来发挥抗炎作用,从而减少促炎细胞因子(如 TNF-α、IL-1β、IL-6 和 NLRP3 炎性体)以及 COX-2、LOX 和 iNOS 等酶的产生,这些酶对先天性和适应性免疫反应至关重要。同时,黄芩素还能增强 Nrf2 的活化,促进 HO-1、NQO1、GPx 和 SOD 等抗氧化酶的表达,从而对抗氧化应激。这些发现凸显了黄芩苷作为治疗神经退行性疾病的一种补充方法的潜力,它为传统疗法提供了一种更安全、更全面的替代疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信