{"title":"Detection of Antibiotic-Resistant Airborne Bacteria in Restaurant Environments in Riyadh City.","authors":"Basel Aldosary, Hichem Chouayekh, Alhanouf Alkhammash, Wasayf Aljuaydi, Gabr El-Kot, Adel Alhotan, Walid Aljarbou, Aiydh Alshehri","doi":"10.1089/hs.2024.0046","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of bacteria that cause illness is a critical problem facing the restaurant industry worldwide. These bacteria can proliferate in various restaurants areas through airborne transmission mechanisms, increasing the risk of food contamination. In this study, our aim was to detect the presence of potential foodborne pathogenic bacteria-<i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, and aerobic bacteria-in aerosols of different restaurants zones in Riyadh city in the Kingdom of Saudi Arabia. We focused on 3 important zones: preparation (Zone A), food packaging (Zone B), and handwashing (Zone C). The bacteria of interest were isolated, identified, and characterized by using selective media, biochemical, and antibiotic susceptibility tests. The results showed that all 40 of the studied restaurants were contaminated with aerobic bacteria, with a total count of 3,978 colony-forming units (CFU) in Zone C, 1,323 in Zone B, and 525 in Zone A. <i>E coli</i> was identified as the most prevalent illness-causing bacteria in Zone A-derived aerosols (721 CFU), while <i>S aureus</i> had the highest occurrence in aerosols in Zone C (528 CFU). Pertaining to the antibiotic resistance phenotype of assessed isolates, our findings revealed that Zone C-derived <i>E coli</i> isolates showed resistance ranging from 25% to 100% toward 8 of the 15 tested antibiotics. <i>S aureus</i> isolates originating from Zone B exhibited between 25% and 75% resistance to 2 antibiotics, while isolates from Zone C showed resistance ranging from 5.88% to 47.05% to 4 antibiotics. Findings from this study illustrate that restaurants' aerosols are highly contaminated with different antibiotic-resistant bacteria, which increases the risk of food poisoning and threats food security.</p>","PeriodicalId":12955,"journal":{"name":"Health Security","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Security","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hs.2024.0046","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of bacteria that cause illness is a critical problem facing the restaurant industry worldwide. These bacteria can proliferate in various restaurants areas through airborne transmission mechanisms, increasing the risk of food contamination. In this study, our aim was to detect the presence of potential foodborne pathogenic bacteria-Escherichia coli, Staphylococcus aureus, and aerobic bacteria-in aerosols of different restaurants zones in Riyadh city in the Kingdom of Saudi Arabia. We focused on 3 important zones: preparation (Zone A), food packaging (Zone B), and handwashing (Zone C). The bacteria of interest were isolated, identified, and characterized by using selective media, biochemical, and antibiotic susceptibility tests. The results showed that all 40 of the studied restaurants were contaminated with aerobic bacteria, with a total count of 3,978 colony-forming units (CFU) in Zone C, 1,323 in Zone B, and 525 in Zone A. E coli was identified as the most prevalent illness-causing bacteria in Zone A-derived aerosols (721 CFU), while S aureus had the highest occurrence in aerosols in Zone C (528 CFU). Pertaining to the antibiotic resistance phenotype of assessed isolates, our findings revealed that Zone C-derived E coli isolates showed resistance ranging from 25% to 100% toward 8 of the 15 tested antibiotics. S aureus isolates originating from Zone B exhibited between 25% and 75% resistance to 2 antibiotics, while isolates from Zone C showed resistance ranging from 5.88% to 47.05% to 4 antibiotics. Findings from this study illustrate that restaurants' aerosols are highly contaminated with different antibiotic-resistant bacteria, which increases the risk of food poisoning and threats food security.
期刊介绍:
Health Security is a peer-reviewed journal providing research and essential guidance for the protection of people’s health before and after epidemics or disasters and for ensuring that communities are resilient to major challenges. The Journal explores the issues posed by disease outbreaks and epidemics; natural disasters; biological, chemical, and nuclear accidents or deliberate threats; foodborne outbreaks; and other health emergencies. It offers important insight into how to develop the systems needed to meet these challenges. Taking an interdisciplinary approach, Health Security covers research, innovations, methods, challenges, and ethical and legal dilemmas facing scientific, military, and health organizations. The Journal is a key resource for practitioners in these fields, policymakers, scientific experts, and government officials.