{"title":"Multimodal fusion model for diagnosing mild cognitive impairment in unilateral middle cerebral artery steno-occlusive disease.","authors":"Ziyi Yuan, Zhaodi Huang, Chaojun Li, Shengrong Li, Qingguo Ren, Xiaona Xia, Qingjun Jiang, Daoqiang Zhang, Qi Zhu, Xiangshui Meng","doi":"10.3389/fnagi.2025.1527323","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To propose a multimodal functional brain network (FBN) and structural brain network (SBN) topological feature fusion technique based on resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), 3D-T1-weighted imaging (3D-T1WI), and demographic characteristics to diagnose mild cognitive impairment (MCI) in patients with unilateral middle cerebral artery (MCA) steno-occlusive disease.</p><p><strong>Methods: </strong>The performances of different algorithms on the MCI dataset were evaluated using 5-fold cross-validation. The diagnostic results of the multimodal performance were evaluated using t-distributed stochastic neighbor embedding (t-SNE) analysis. The four-modal analysis method proposed in this study was applied to identify brain regions and connections associated with MCI, thus confirming its validity.</p><p><strong>Results: </strong>Based on the fusion of the topological features of the multimodal FBN and SBN, the accuracy for the diagnosis of MCI in patients with unilateral MCA steno-occlusive disease reached 90.00%. The accuracy, recall, sensitivity, and F1-score were higher than those of the other methods, as was the diagnostic efficacy (AUC = 0.9149).</p><p><strong>Conclusion: </strong>The multimodal FBN and SBN topological feature fusion technique, which incorporates rs-fMRI, DTI, 3D-T1WI, and demographic characteristics, obtains the most discriminative features of MCI in patients with unilateral MCA steno-occlusive disease and can effectively identify disease-related brain areas and connections. Efficient automated diagnosis facilitates the early and accurate detection of MCI and timely intervention and treatment to delay or prevent disease progression.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1527323"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1527323","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To propose a multimodal functional brain network (FBN) and structural brain network (SBN) topological feature fusion technique based on resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), 3D-T1-weighted imaging (3D-T1WI), and demographic characteristics to diagnose mild cognitive impairment (MCI) in patients with unilateral middle cerebral artery (MCA) steno-occlusive disease.
Methods: The performances of different algorithms on the MCI dataset were evaluated using 5-fold cross-validation. The diagnostic results of the multimodal performance were evaluated using t-distributed stochastic neighbor embedding (t-SNE) analysis. The four-modal analysis method proposed in this study was applied to identify brain regions and connections associated with MCI, thus confirming its validity.
Results: Based on the fusion of the topological features of the multimodal FBN and SBN, the accuracy for the diagnosis of MCI in patients with unilateral MCA steno-occlusive disease reached 90.00%. The accuracy, recall, sensitivity, and F1-score were higher than those of the other methods, as was the diagnostic efficacy (AUC = 0.9149).
Conclusion: The multimodal FBN and SBN topological feature fusion technique, which incorporates rs-fMRI, DTI, 3D-T1WI, and demographic characteristics, obtains the most discriminative features of MCI in patients with unilateral MCA steno-occlusive disease and can effectively identify disease-related brain areas and connections. Efficient automated diagnosis facilitates the early and accurate detection of MCI and timely intervention and treatment to delay or prevent disease progression.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.