{"title":"Exploring the Differentiation Abilities of Hair Follicle and Dental Pulp Stem Cells Into Islet Like Cells.","authors":"Avinash Kharat, Kalyani Bhate, Avinash Sanap, Supriya Kheur, Murtuza Contractor, Poonam Suryawanshi, Ramesh Bhonde","doi":"10.1002/cbin.70010","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to compare the differentiation potential of dental pulp-derived mesenchymal stem cells (DP-MSCs) and hair follicle-derived mesenchymal stem cells (HF-MSCs), which originated from the ectoderm. Dental pulps were separated from the extracted wisdom teeth during dental surgery, and Hair follicles were extracted from the scalp of patients undergoing hair transplantation. We cultivated the cell in cell culture media, supplemented with additional nutrients. After the fourth passage, the homogeneous population of DP-MSCs and HF-MSCs was analyzed for the surface markers (CD73, CD90, and CD105) by fluorescence-activated cell sorting. In vitro, the multi-lineage differentiation potential for both the MSCs was tested with respective induction media such as osteogenic, chondrogenic, adipogenic, and insulin-producing cells. Following the fourth passage, identical fibroblast-like cells were noted in each culture plate. Mesenchymal stem cell marker was expressed in both DP-MSCs and HF-MSCs. Both the DP-MSCs and HF-MSCs exhibited similar differentiation potential toward osteogenic, chondrogenic, and adipogenic differentiation. However, there was a difference in the differentiation potential into IPCs. HF-MSCs showed higher C-peptide and insulin secretion response to glucose, PDX1, and Insulin gene expression compared to DP-MSCs. These findings suggest that although DP-MSCs and HF-MSCs showed similar stemness properties, they differ in their differentiation potential towards insulin-producing cells (IPCs). This is the first report showing the potential of HF-MSCs to generate IPCs, revealing hair follicles as a novel and promising source for autologous stem cell therapy in diabetes. The generated islet organoids can be used for diabetic drug toxicity testing and screening.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to compare the differentiation potential of dental pulp-derived mesenchymal stem cells (DP-MSCs) and hair follicle-derived mesenchymal stem cells (HF-MSCs), which originated from the ectoderm. Dental pulps were separated from the extracted wisdom teeth during dental surgery, and Hair follicles were extracted from the scalp of patients undergoing hair transplantation. We cultivated the cell in cell culture media, supplemented with additional nutrients. After the fourth passage, the homogeneous population of DP-MSCs and HF-MSCs was analyzed for the surface markers (CD73, CD90, and CD105) by fluorescence-activated cell sorting. In vitro, the multi-lineage differentiation potential for both the MSCs was tested with respective induction media such as osteogenic, chondrogenic, adipogenic, and insulin-producing cells. Following the fourth passage, identical fibroblast-like cells were noted in each culture plate. Mesenchymal stem cell marker was expressed in both DP-MSCs and HF-MSCs. Both the DP-MSCs and HF-MSCs exhibited similar differentiation potential toward osteogenic, chondrogenic, and adipogenic differentiation. However, there was a difference in the differentiation potential into IPCs. HF-MSCs showed higher C-peptide and insulin secretion response to glucose, PDX1, and Insulin gene expression compared to DP-MSCs. These findings suggest that although DP-MSCs and HF-MSCs showed similar stemness properties, they differ in their differentiation potential towards insulin-producing cells (IPCs). This is the first report showing the potential of HF-MSCs to generate IPCs, revealing hair follicles as a novel and promising source for autologous stem cell therapy in diabetes. The generated islet organoids can be used for diabetic drug toxicity testing and screening.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.