Sahib Zada, Md Entaz Bahar, Wanil Kim, Deok Ryong Kim
{"title":"Chlorogenic Acid Enhances Beta-Lapachone-Induced Cell Death by Suppressing Autophagy in NQO1-Positive Cancer Cells.","authors":"Sahib Zada, Md Entaz Bahar, Wanil Kim, Deok Ryong Kim","doi":"10.1002/cbin.70006","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance to apoptosis-inducing drugs frequently occurs in cancer cells, limiting their usefulness in ongoing cancer treatment. Despite ongoing efforts to overcome drug resistance, a definitive solution remains elusive. However, autophagy inhibition has been shown to enhance the effectiveness of some anticancer drugs and is a possible strategy for overcoming drug resistance. In this study, we demonstrate that chlorogenic acid (CGA), a natural antioxidant, significantly enhances beta-lapachone (β-Lap)-induced cell death in cancer cells. The augmented apoptosis induced by CGA is associated with activation of protein kinase A (PKA) in β-Lap-treated cells, independent of the antioxidant properties of CGA. As a result, PKA activation in cancer cells co-treated with β-Lap and CGA effectively inhibits autophagy. Notably, PKA activation leads to phosphorylation of microtubule-associated protein 1 A/1B-light chain 3 (LC3) at the serine 12 residue, causing autophagy suppression irrespective of mTORC activity. Importantly, the cell death induced by β-Lap and CGA in NQO1-overexpressing breast or lung cancers is closely linked to autophagy inhibition. These findings suggest that combining β-Lap and CGA might be a novel strategy for cancer therapy, particularly for overcoming drug resistance caused by autophagy induction in cancer cells.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resistance to apoptosis-inducing drugs frequently occurs in cancer cells, limiting their usefulness in ongoing cancer treatment. Despite ongoing efforts to overcome drug resistance, a definitive solution remains elusive. However, autophagy inhibition has been shown to enhance the effectiveness of some anticancer drugs and is a possible strategy for overcoming drug resistance. In this study, we demonstrate that chlorogenic acid (CGA), a natural antioxidant, significantly enhances beta-lapachone (β-Lap)-induced cell death in cancer cells. The augmented apoptosis induced by CGA is associated with activation of protein kinase A (PKA) in β-Lap-treated cells, independent of the antioxidant properties of CGA. As a result, PKA activation in cancer cells co-treated with β-Lap and CGA effectively inhibits autophagy. Notably, PKA activation leads to phosphorylation of microtubule-associated protein 1 A/1B-light chain 3 (LC3) at the serine 12 residue, causing autophagy suppression irrespective of mTORC activity. Importantly, the cell death induced by β-Lap and CGA in NQO1-overexpressing breast or lung cancers is closely linked to autophagy inhibition. These findings suggest that combining β-Lap and CGA might be a novel strategy for cancer therapy, particularly for overcoming drug resistance caused by autophagy induction in cancer cells.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.