A review of graded scaffolds made by additive manufacturing for tissue engineering: design, fabrication and properties.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yue Wang, Shangsi Chen, Haowen Liang, Jiaming Bai
{"title":"A review of graded scaffolds made by additive manufacturing for tissue engineering: design, fabrication and properties.","authors":"Yue Wang, Shangsi Chen, Haowen Liang, Jiaming Bai","doi":"10.1088/1758-5090/adba8e","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of tissue engineering (TE) has provided new vital means for human body tissue/organ repair. TE scaffolds can provide temporary structural support for cell attachment, growth, and proliferation, until the body restores the mechanical and biological properties of the host tissues. Since native tissues are inhomogeneous and in many situations are graded structures for performing their unique functions, graded scaffolds have become increasingly attractive for regenerating particular types of tissues, which aim to offer a more accurate replication of native interactions and functions. Importantly, the advances introduced by additive manufacturing (AM) have now enabled more design freedom and are capable of tailoring both structural and compositional gradients within a single scaffold. In this context, graded TE scaffolds fabricated by AM technologies have been attracting increasing attention. In this review, we start with an introduction of common graded structures in the human body and analyse the advantages and strengths of AM-formed graded scaffolds. Various AM technologies that can be leveraged to produce graded scaffolds are then reviewed based on non-cellular 3D printing and cell-laden 3D bioprinting. The comparisons among various AM technologies for fabricating graded scaffolds are presented. Subsequently, we propose several types of gradients, structural, material, biomolecular and multi-gradients for scaffolds, and highlight the design methods, resulting mechanical properties and biological responses. Finally, current status, challenges and perspectives for AM in developing graded scaffolds are exhibited and discussed.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adba8e","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of tissue engineering (TE) has provided new vital means for human body tissue/organ repair. TE scaffolds can provide temporary structural support for cell attachment, growth, and proliferation, until the body restores the mechanical and biological properties of the host tissues. Since native tissues are inhomogeneous and in many situations are graded structures for performing their unique functions, graded scaffolds have become increasingly attractive for regenerating particular types of tissues, which aim to offer a more accurate replication of native interactions and functions. Importantly, the advances introduced by additive manufacturing (AM) have now enabled more design freedom and are capable of tailoring both structural and compositional gradients within a single scaffold. In this context, graded TE scaffolds fabricated by AM technologies have been attracting increasing attention. In this review, we start with an introduction of common graded structures in the human body and analyse the advantages and strengths of AM-formed graded scaffolds. Various AM technologies that can be leveraged to produce graded scaffolds are then reviewed based on non-cellular 3D printing and cell-laden 3D bioprinting. The comparisons among various AM technologies for fabricating graded scaffolds are presented. Subsequently, we propose several types of gradients, structural, material, biomolecular and multi-gradients for scaffolds, and highlight the design methods, resulting mechanical properties and biological responses. Finally, current status, challenges and perspectives for AM in developing graded scaffolds are exhibited and discussed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信