A cysteine-rich transmembrane module peptide GhCYSTM9 is involved in cold stress response.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Xiao Cai, Cunjing Liu, Liyuan Tang, Sujun Zhang, Xinghe Li, Haitao Wang, Jianhong Zhang
{"title":"A cysteine-rich transmembrane module peptide GhCYSTM9 is involved in cold stress response.","authors":"Xiao Cai, Cunjing Liu, Liyuan Tang, Sujun Zhang, Xinghe Li, Haitao Wang, Jianhong Zhang","doi":"10.1186/s12870-025-06271-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cysteine-rich transmembrane module (CYSTM) peptides, which are widely distributed and highly conserved in eukaryotes, are largely involved in stress response and defence. However, the role of cotton CYSTM genes in the stress response has not been functionally characterized.</p><p><strong>Results: </strong>In this study, we identified GhCYSTM9 as a cold stress-responsive CYSTM member from upland cotton. Compared with that in control cotton plants, GhCYSTM9 silencing in cotton resulted in reduced tolerance under cold stress, accompanied by higher MDA contents and lower proline contents and SOD activities in leaves. Overexpressing GhCYTMS9 in Arabidopsis significantly increased the seed germination rates and root elongation at the germination stage. Compared with wild-type seedlings, GhCYSTM9-overexpressing seedlings presented lower MDA contents and greater proline contents in leaves under cold stress. Transcriptome analysis of transgenic Arabidopsis revealed that GhCYSTM9 may contribute to the cold response by regulating oxidative stress-related genes to mediate ROS levels. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that GhCYSTM9 interacted with the light-harvesting chlorophyll a/b-binding protein GhLHBC2A1.</p><p><strong>Conclusions: </strong>Overall, our results revealed a positive role of GhCYSTM9 in cold stress defence and suggested candidate genes for the genetic breeding of cold defence.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"262"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06271-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cysteine-rich transmembrane module (CYSTM) peptides, which are widely distributed and highly conserved in eukaryotes, are largely involved in stress response and defence. However, the role of cotton CYSTM genes in the stress response has not been functionally characterized.

Results: In this study, we identified GhCYSTM9 as a cold stress-responsive CYSTM member from upland cotton. Compared with that in control cotton plants, GhCYSTM9 silencing in cotton resulted in reduced tolerance under cold stress, accompanied by higher MDA contents and lower proline contents and SOD activities in leaves. Overexpressing GhCYTMS9 in Arabidopsis significantly increased the seed germination rates and root elongation at the germination stage. Compared with wild-type seedlings, GhCYSTM9-overexpressing seedlings presented lower MDA contents and greater proline contents in leaves under cold stress. Transcriptome analysis of transgenic Arabidopsis revealed that GhCYSTM9 may contribute to the cold response by regulating oxidative stress-related genes to mediate ROS levels. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that GhCYSTM9 interacted with the light-harvesting chlorophyll a/b-binding protein GhLHBC2A1.

Conclusions: Overall, our results revealed a positive role of GhCYSTM9 in cold stress defence and suggested candidate genes for the genetic breeding of cold defence.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信