Sunil Thomas, Kyle Bittinger, Lawrence L Livornese
{"title":"Utilizing the biosimulator to analyze the environmental microbiome within the intensive care units of a hospital.","authors":"Sunil Thomas, Kyle Bittinger, Lawrence L Livornese","doi":"10.1080/07366205.2025.2467550","DOIUrl":null,"url":null,"abstract":"<p><p>Hospital-acquired infections (HAIs), also known as nosocomial infections, are illnesses contracted during treatment at a healthcare facility and can result in severe or life-threatening complications. HAIs are caused by microorganisms that exhibit resistance to standard antibiotics. HAIs can lead to severe complications, longer stays, and increased mortality, particularly in vulnerable patients. In our previous study, we demonstrated the ability of an engraved Petri dish, referred to as a \"biosimulator,\" to induce adhesion of non-adherent cells and the microbiome. This paper explores the use of the biosimulator to elucidate the microbiome composition within intensive care units (ICUs) in a hospital setting. The biosimulator, with a nutrient-rich bacterial growth medium, was placed in ICUs for 24 h, then incubated for three days under aerobic and anaerobic conditions. Using 16S rRNA sequencing, we profiled the ICU microbiome from multiple samples. Our findings showed that ICU microbiomes closely mirrored those of patients, with microorganisms in the ICU exhibiting stronger interrelationships than in control conditions. The combined use of the biosimulator and profiling offers an effective approach for analyzing and understanding microbiome changes in healthcare settings, particularly in high-risk areas, such as ICUs.</p>","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":" ","pages":"1-10"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07366205.2025.2467550","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Hospital-acquired infections (HAIs), also known as nosocomial infections, are illnesses contracted during treatment at a healthcare facility and can result in severe or life-threatening complications. HAIs are caused by microorganisms that exhibit resistance to standard antibiotics. HAIs can lead to severe complications, longer stays, and increased mortality, particularly in vulnerable patients. In our previous study, we demonstrated the ability of an engraved Petri dish, referred to as a "biosimulator," to induce adhesion of non-adherent cells and the microbiome. This paper explores the use of the biosimulator to elucidate the microbiome composition within intensive care units (ICUs) in a hospital setting. The biosimulator, with a nutrient-rich bacterial growth medium, was placed in ICUs for 24 h, then incubated for three days under aerobic and anaerobic conditions. Using 16S rRNA sequencing, we profiled the ICU microbiome from multiple samples. Our findings showed that ICU microbiomes closely mirrored those of patients, with microorganisms in the ICU exhibiting stronger interrelationships than in control conditions. The combined use of the biosimulator and profiling offers an effective approach for analyzing and understanding microbiome changes in healthcare settings, particularly in high-risk areas, such as ICUs.
期刊介绍:
BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies.
Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers:
Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions
Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices
Surveys of technical approaches related to broad fields of research
Reviews discussing advancements in techniques and methods related to broad fields of research
Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.