Victoria Chaves Ribeiro, Lilian Cristina Russo, Dulce María González Duré, Nícolas Carlos Hoch
{"title":"Interferon-induced ADP-ribosylation: technical developments driving ICAB discovery.","authors":"Victoria Chaves Ribeiro, Lilian Cristina Russo, Dulce María González Duré, Nícolas Carlos Hoch","doi":"10.1042/BSR20240986","DOIUrl":null,"url":null,"abstract":"<p><p>Cells respond to a variety of internal and external stimuli by regulating the activities of different signalling cascades and cellular processes, often via chemical modifications of biological macromolecules that modulate their overall levels, biochemical activities or biophysical interactions. One such modification, termed ADP-ribosylation (ADPr), is emerging as an important player in the interferon (IFN) response, but the molecular targets and functions of ADP-ribosyltransferases within this core component of innate immunity still remains unclear. We and others have recently identified that stimulation of IFN signalling cascades promotes the formation of a novel cytosolic structure in human cells that is enriched in ADP-ribosyl modifications. Here, we propose to name these structures 'interferon-induced cytosolic ADPr bodies' (ICABs) and discuss their known components and potential functions. We also review methods to detect ICABs (and cellular ADPr in general) using a range of recently developed reagents. This lays the foundation for future studies aimed at elucidating the molecular functions of ICABs and ADPr in innate immune responses, which is a central unanswered question in the field.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240986","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cells respond to a variety of internal and external stimuli by regulating the activities of different signalling cascades and cellular processes, often via chemical modifications of biological macromolecules that modulate their overall levels, biochemical activities or biophysical interactions. One such modification, termed ADP-ribosylation (ADPr), is emerging as an important player in the interferon (IFN) response, but the molecular targets and functions of ADP-ribosyltransferases within this core component of innate immunity still remains unclear. We and others have recently identified that stimulation of IFN signalling cascades promotes the formation of a novel cytosolic structure in human cells that is enriched in ADP-ribosyl modifications. Here, we propose to name these structures 'interferon-induced cytosolic ADPr bodies' (ICABs) and discuss their known components and potential functions. We also review methods to detect ICABs (and cellular ADPr in general) using a range of recently developed reagents. This lays the foundation for future studies aimed at elucidating the molecular functions of ICABs and ADPr in innate immune responses, which is a central unanswered question in the field.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics