Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging.

IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY
Saurabh Gupta, Muhammad Afzal, Neetu Agrawal, Waleed Hassan Almalki, Mohit Rana, Saurabh Gangola, Suresh V Chinni, Benod Kumar K, Haider Ali, Sachin Kumar Singh, Saurabh Kumar Jha, Gaurav Gupta
{"title":"Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging.","authors":"Saurabh Gupta, Muhammad Afzal, Neetu Agrawal, Waleed Hassan Almalki, Mohit Rana, Saurabh Gangola, Suresh V Chinni, Benod Kumar K, Haider Ali, Sachin Kumar Singh, Saurabh Kumar Jha, Gaurav Gupta","doi":"10.1007/s10522-025-10207-0","DOIUrl":null,"url":null,"abstract":"<p><p>Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD<sup>+</sup> precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 2","pages":"65"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10207-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.

利用FOXO-SIRT1轴:洞察细胞应激,代谢和衰老。
衰老和代谢紊乱共享复杂的分子途径,叉头盒O (FOXO)- SIRT1 (SIRT1)轴成为细胞应激适应、代谢稳态和寿命的关键调节因子。这条轴将营养信号与氧化应激防御、调节糖脂代谢、线粒体功能和自噬结合起来,以维持细胞稳定。FOXO转录因子受SIRT1去乙酰化的调控,增强抗氧化防御机制,激活超氧化物歧化酶(SOD)和过氧化氢酶等基因,从而抵消氧化应激和代谢失调。最近的证据强调了活性氧(ROS)作为氧化还原信号的次级信使的动态作用,影响FOXO-SIRT1在代谢适应中的活性。此外,关键的氧化还原敏感调节因子,如核因子红系2相关因子2 (Nrf2)和过氧化物酶体增殖体激活受体γ辅助激活因子-1α (PGC-1α)与该途径相互作用,协调线粒体生物发生和适应性应激反应。包括α -硫辛酸(ALA)、白藜芦醇、姜黄素和NAD+前体在内的药物干预,通过增强胰岛素敏感性、减少氧化负担和恢复代谢平衡,显示出治疗潜力。本文综述了FOXO-SIRT1调控的最新进展、其在氧化还原稳态中的新作用及其治疗相关性,为未来对抗代谢功能障碍和衰老相关疾病的策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogerontology
Biogerontology 医学-老年医学
CiteScore
8.00
自引率
4.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments. Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信