Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging
{"title":"Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging","authors":"Katalin Banki, Andras Perl","doi":"10.1016/j.autrev.2025.103781","DOIUrl":null,"url":null,"abstract":"<div><div>The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.</div></div>","PeriodicalId":8664,"journal":{"name":"Autoimmunity reviews","volume":"24 5","pages":"Article 103781"},"PeriodicalIF":9.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoimmunity reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568997225000412","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
期刊介绍:
Autoimmunity Reviews is a publication that features up-to-date, structured reviews on various topics in the field of autoimmunity. These reviews are written by renowned experts and include demonstrative illustrations and tables. Each article will have a clear "take-home" message for readers.
The selection of articles is primarily done by the Editors-in-Chief, based on recommendations from the international Editorial Board. The topics covered in the articles span all areas of autoimmunology, aiming to bridge the gap between basic and clinical sciences.
In terms of content, the contributions in basic sciences delve into the pathophysiology and mechanisms of autoimmune disorders, as well as genomics and proteomics. On the other hand, clinical contributions focus on diseases related to autoimmunity, novel therapies, and clinical associations.
Autoimmunity Reviews is internationally recognized, and its articles are indexed and abstracted in prestigious databases such as PubMed/Medline, Science Citation Index Expanded, Biosciences Information Services, and Chemical Abstracts.