Jessie O'Hara, Pushkar Dakle, Michelle Ly Thai Nguyen, Adele Barugahare, Taylah J Bennett, Vibha Av Udupa, Nicholas Murray, Gemma Schlegel, Constantine Kapouleas, Jasmine Li, Stephen J Turner, Brendan E Russ
{"title":"Notch dependent chromatin remodeling enables Gata3 binding and drives lineage specific CD8<sup>+</sup> T cell function.","authors":"Jessie O'Hara, Pushkar Dakle, Michelle Ly Thai Nguyen, Adele Barugahare, Taylah J Bennett, Vibha Av Udupa, Nicholas Murray, Gemma Schlegel, Constantine Kapouleas, Jasmine Li, Stephen J Turner, Brendan E Russ","doi":"10.1111/imcb.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Activation of CD8<sup>+</sup> T cells enable them to control virus infections and tumors. This process involves the differentiation of naïve CD8<sup>+</sup> T cells into effector and memory states, driven by specific transcription factors (TFs). Previously, we have shown that Granzyme A (Gzma) induction in activated CD8<sup>+</sup> T cells depends on Gata3 and the establishment of a permissive chromatin landscape at the Gzma locus. Interestingly, Gzma expression is independent of IL-4 signaling, which typically upregulates Gata3 in CD4<sup>+</sup> T cells, suggesting an alternative pathway for Gata3 induction. Here we demonstrate that Notch signals during CD8<sup>+</sup> T cell activation promote Gzma expression. Inhibition of Notch signaling or loss of the Notch transactivator Rbp-j leads to reduced Gzma expression, with transcriptionally repressive chromatin at the Gzma locus. The genome targets of Gata3 differ in effector CD8<sup>+</sup> T cells activated with IL-4 compared with those activated with Notch signals or isolated after IAV infection. This indicates that the signals received during CD8<sup>+</sup> T cell activation can alter the chromatin landscape, affecting Gata3 function. Furthermore, Gata3 deficiency results in reduced IAV-specific CD8<sup>+</sup> T cell responses and decreased Gzma expression, although the Gzma locus maintains a permissive chromatin landscape. These findings suggest that Notch signals received by virus-specific CD8<sup>+</sup> T cells prepare the chromatin landscape for Gata3 binding to CD8<sup>+</sup> lineage-specific gene loci, promoting effective CD8<sup>+</sup> T cell immunity.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/imcb.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Activation of CD8+ T cells enable them to control virus infections and tumors. This process involves the differentiation of naïve CD8+ T cells into effector and memory states, driven by specific transcription factors (TFs). Previously, we have shown that Granzyme A (Gzma) induction in activated CD8+ T cells depends on Gata3 and the establishment of a permissive chromatin landscape at the Gzma locus. Interestingly, Gzma expression is independent of IL-4 signaling, which typically upregulates Gata3 in CD4+ T cells, suggesting an alternative pathway for Gata3 induction. Here we demonstrate that Notch signals during CD8+ T cell activation promote Gzma expression. Inhibition of Notch signaling or loss of the Notch transactivator Rbp-j leads to reduced Gzma expression, with transcriptionally repressive chromatin at the Gzma locus. The genome targets of Gata3 differ in effector CD8+ T cells activated with IL-4 compared with those activated with Notch signals or isolated after IAV infection. This indicates that the signals received during CD8+ T cell activation can alter the chromatin landscape, affecting Gata3 function. Furthermore, Gata3 deficiency results in reduced IAV-specific CD8+ T cell responses and decreased Gzma expression, although the Gzma locus maintains a permissive chromatin landscape. These findings suggest that Notch signals received by virus-specific CD8+ T cells prepare the chromatin landscape for Gata3 binding to CD8+ lineage-specific gene loci, promoting effective CD8+ T cell immunity.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.