Prevention of acid rock drainage formation through pyrite inhibition by silica coating.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Dantie Claudia Butar Butar, Lena Alakangas, Hanna Kaasalainen, Erik Ronne
{"title":"Prevention of acid rock drainage formation through pyrite inhibition by silica coating.","authors":"Dantie Claudia Butar Butar, Lena Alakangas, Hanna Kaasalainen, Erik Ronne","doi":"10.1007/s11356-025-36131-x","DOIUrl":null,"url":null,"abstract":"<p><p>Passive treatment of acid rock drainage (ARD) is a sustainable approach to control ARD, with sulfide inhibition by silica being a promising alternative. In a small-scale column leaching, a total of four cells loaded with pyritic waste rock (11 wt% S) from an operating Cu mine in Sweden were kept in a climatic chamber at a controlled temperature and humidity. The waste rock was leached for 11 weeks before treatment using alkaline silicate solution was applied, without pH buffer and adjuster. One cell was left untreated, whereas the others were treated with silicate solution as a source of dissolved silica, with and without H<sub>2</sub>O<sub>2</sub> pre-oxidation. The pH in silica-treated cells generated leachate with circumneutral pH until the end of the leaching cycle, whereas sulfide oxidation accelerated in the absence of treatment. Leachate quality in all Si-treated cells improved, as evidenced by the suppressed release of sulfur and other metals (e.g., Al, Fe, Cu, Co, Mn, and Ni). Upon treatment with a longer contact time, silica (SiO<sub>2</sub>) layer developed on waste rock and inhibited pyrite. The layer remained stable upon extended exposure to air and water for up to 10 weeks after treatment. Despite forming a siliceous Fe-O phase, H<sub>2</sub>O<sub>2</sub> pre-oxidation resulted in indirect oxidation of sulfides and other phases. With an excess of silicate solution and at alkaline pH, pyrite surfaces are devoid of coating and metal ions were mobilized. Finally, this study suggested that treatment of pyritic waste rock using silica can attenuate ARD formation and prevent metal leaching by pyrite inhibition and maintaining a circumneutral pH environment or both.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36131-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Passive treatment of acid rock drainage (ARD) is a sustainable approach to control ARD, with sulfide inhibition by silica being a promising alternative. In a small-scale column leaching, a total of four cells loaded with pyritic waste rock (11 wt% S) from an operating Cu mine in Sweden were kept in a climatic chamber at a controlled temperature and humidity. The waste rock was leached for 11 weeks before treatment using alkaline silicate solution was applied, without pH buffer and adjuster. One cell was left untreated, whereas the others were treated with silicate solution as a source of dissolved silica, with and without H2O2 pre-oxidation. The pH in silica-treated cells generated leachate with circumneutral pH until the end of the leaching cycle, whereas sulfide oxidation accelerated in the absence of treatment. Leachate quality in all Si-treated cells improved, as evidenced by the suppressed release of sulfur and other metals (e.g., Al, Fe, Cu, Co, Mn, and Ni). Upon treatment with a longer contact time, silica (SiO2) layer developed on waste rock and inhibited pyrite. The layer remained stable upon extended exposure to air and water for up to 10 weeks after treatment. Despite forming a siliceous Fe-O phase, H2O2 pre-oxidation resulted in indirect oxidation of sulfides and other phases. With an excess of silicate solution and at alkaline pH, pyrite surfaces are devoid of coating and metal ions were mobilized. Finally, this study suggested that treatment of pyritic waste rock using silica can attenuate ARD formation and prevent metal leaching by pyrite inhibition and maintaining a circumneutral pH environment or both.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信