Engineering Asymmetric Electronic Structure of Co─N─C Single-Atomic Sites Toward Excellent Electrochemical H2O2 Production and Biomass Upgrading

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kun Yu, Shiming Guan, Dr. Wenbiao Zhang, Wanling Zhang, Prof. Dr. Yuying Meng, Prof. Dr. Huaijun Lin, Prof. Dr. Qingsheng Gao
{"title":"Engineering Asymmetric Electronic Structure of Co─N─C Single-Atomic Sites Toward Excellent Electrochemical H2O2 Production and Biomass Upgrading","authors":"Kun Yu,&nbsp;Shiming Guan,&nbsp;Dr. Wenbiao Zhang,&nbsp;Wanling Zhang,&nbsp;Prof. Dr. Yuying Meng,&nbsp;Prof. Dr. Huaijun Lin,&nbsp;Prof. Dr. Qingsheng Gao","doi":"10.1002/anie.202502383","DOIUrl":null,"url":null,"abstract":"<p>To advance electrochemical H<sub>2</sub>O<sub>2</sub> production and unravel catalytic mechanisms, the precise structural coordination of single-atomic M-N-C electrocatalysts is urgently required. Herein, the Co─N<sub>5</sub> site with an asymmetric electronic configuration is constructed to boost the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) compared to symmetric Co─N<sub>4</sub>, effectively overcoming the trade-off between activity and selectivity in H<sub>2</sub>O<sub>2</sub> production. Both experimental and theoretical analyses demonstrate that breaking the symmetry of Co─N sites promotes the activation of O<sub>2</sub> molecules and moderates the adsorption of the key *OOH intermediate by disrupting the linear scaling relationship for intermediates adsorption. This modulation enables efficient H₂O₂ production and its effective retention for subsequent applications. As a proof of concept, Co─N<sub>5</sub> achieves a H<sub>2</sub>O<sub>2</sub> production rate as high as 16.1 mol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> in a flow cell, outperforming most recently reported counterparts. Furthermore, the coupling of 2e<sup>−</sup> ORR with the oxidation of cellulose-derived carbohydrates accomplishes high formic acid yields (84.1% from glucose and 62.0%–92.1% from other substrates), underpinning the sustainable electro-refinery for biomass valorization at ambient conditions. By elucidating the intrinsic relationship between 2e⁻ ORR and the asymmetry of single-atomic sites, this work paves the way for high-performance electrosynthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 19","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202502383","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To advance electrochemical H2O2 production and unravel catalytic mechanisms, the precise structural coordination of single-atomic M-N-C electrocatalysts is urgently required. Herein, the Co─N5 site with an asymmetric electronic configuration is constructed to boost the two-electron oxygen reduction reaction (2e ORR) compared to symmetric Co─N4, effectively overcoming the trade-off between activity and selectivity in H2O2 production. Both experimental and theoretical analyses demonstrate that breaking the symmetry of Co─N sites promotes the activation of O2 molecules and moderates the adsorption of the key *OOH intermediate by disrupting the linear scaling relationship for intermediates adsorption. This modulation enables efficient H₂O₂ production and its effective retention for subsequent applications. As a proof of concept, Co─N5 achieves a H2O2 production rate as high as 16.1 mol gcat−1 h−1 in a flow cell, outperforming most recently reported counterparts. Furthermore, the coupling of 2e ORR with the oxidation of cellulose-derived carbohydrates accomplishes high formic acid yields (84.1% from glucose and 62.0%–92.1% from other substrates), underpinning the sustainable electro-refinery for biomass valorization at ambient conditions. By elucidating the intrinsic relationship between 2e⁻ ORR and the asymmetry of single-atomic sites, this work paves the way for high-performance electrosynthesis.

Abstract Image

Co-N-C单原子位的工程不对称电子结构实现优异的电化学H2O2生产和生物质升级。
为了推进电化学生产H2O2和揭示催化机理,迫切需要精确的单原子M-N-C电催化剂结构配位。本文构建了具有不对称电子构型的Co-N5位点,与对称的Co-N4相比,可以促进双电子氧还原反应(2e- ORR),有效地克服了H2O2生成中活性和选择性之间的权衡。实验和理论分析均表明,破坏Co-N位点的对称性可以促进O2分子的活化,并通过破坏中间体吸附的线性标度关系来减缓关键*OOH中间体的吸附。这种调制可以有效地产生H2O2,并为后续应用提供有效的保留。作为概念证明,Co-N5在流动池中实现了高达16.1 mol gcat-1 h-1的H2O2产率,优于最近报道的同类产品。此外,2e- ORR与纤维素衍生碳水化合物氧化的耦合实现了高甲酸产率(葡萄糖产率为84.1%,其他底物产率为62.0-92.1%),为环境条件下生物质增值的可持续电精炼厂奠定了基础。通过阐明2e- ORR与单原子位不对称性之间的内在关系,本工作为高性能电合成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信