Variability in proliferative and migratory defects in Hirschsprung disease-associated RET pathogenic variants.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-04-03 Epub Date: 2025-02-25 DOI:10.1016/j.ajhg.2025.02.004
Lauren E Fries, Sree Dharma, Aravinda Chakravarti, Sumantra Chatterjee
{"title":"Variability in proliferative and migratory defects in Hirschsprung disease-associated RET pathogenic variants.","authors":"Lauren E Fries, Sree Dharma, Aravinda Chakravarti, Sumantra Chatterjee","doi":"10.1016/j.ajhg.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Hirschsprung disease (HSCR) exhibits extensive genetic heterogeneity, with 72% of cases involving pathogenic variants in 10 genes forming a gene regulatory network (GRN) essential for enteric nervous system (ENS) development. The receptor tyrosine kinase gene RET is the most significant contributor, implicated in 12%-50% of individuals depending on the phenotype. RET plays a critical role in ENS precursor proliferation and migration, and defects in these processes lead to HSCR. However, the functional impact of RET pathogenic variants and their mechanisms of disease remain poorly understood. To address this, we investigated proliferative and migratory phenotypes in a RET-dependent neural crest-derived cell line harboring one of five missense (c.166C>A [p.Leu56Met]; c.532G>C [p.Glu178Gln]; c.2372A>T [p.Tyr791Phe]; c.2765C>A [p.Ser922Tyr]; or c.2994T>A [p.Phe998Leu]) or three nonsense (c.612C>A, c.2308C>T, or c.2943C>G) heterozygous pathogenic RET variants. Using cDNA- and CRISPR-based prime reverse insertion mechanism engineering (PRIME) editing coupled with quantitative proliferation and migration assays, we observed significant losses in proliferation and migration in three missense (c.612C>A [p.Tyr204<sup>∗</sup>]; c.2308C>T [p.Arg770<sup>∗</sup>]; and c.2943C>G [p.Tyr981<sup>∗</sup>]) and all nonsense variants. Notably, the c.2372A>T (p.Tyr791Phe) missense variant, whose pathogenicity has been debated, appears benign. Importantly, the severity of migration loss did not consistently correlate with proliferation defects, and the phenotypic severity of nonsense variants was independent of their position within the RET protein. This study highlights the necessity of targeted functional assays to accurately assess the pathogenicity of HSCR-associated variants rather than relying solely on bioinformatics predictions, which could be refined by incorporating functional data.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"863-875"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.02.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hirschsprung disease (HSCR) exhibits extensive genetic heterogeneity, with 72% of cases involving pathogenic variants in 10 genes forming a gene regulatory network (GRN) essential for enteric nervous system (ENS) development. The receptor tyrosine kinase gene RET is the most significant contributor, implicated in 12%-50% of individuals depending on the phenotype. RET plays a critical role in ENS precursor proliferation and migration, and defects in these processes lead to HSCR. However, the functional impact of RET pathogenic variants and their mechanisms of disease remain poorly understood. To address this, we investigated proliferative and migratory phenotypes in a RET-dependent neural crest-derived cell line harboring one of five missense (c.166C>A [p.Leu56Met]; c.532G>C [p.Glu178Gln]; c.2372A>T [p.Tyr791Phe]; c.2765C>A [p.Ser922Tyr]; or c.2994T>A [p.Phe998Leu]) or three nonsense (c.612C>A, c.2308C>T, or c.2943C>G) heterozygous pathogenic RET variants. Using cDNA- and CRISPR-based prime reverse insertion mechanism engineering (PRIME) editing coupled with quantitative proliferation and migration assays, we observed significant losses in proliferation and migration in three missense (c.612C>A [p.Tyr204]; c.2308C>T [p.Arg770]; and c.2943C>G [p.Tyr981]) and all nonsense variants. Notably, the c.2372A>T (p.Tyr791Phe) missense variant, whose pathogenicity has been debated, appears benign. Importantly, the severity of migration loss did not consistently correlate with proliferation defects, and the phenotypic severity of nonsense variants was independent of their position within the RET protein. This study highlights the necessity of targeted functional assays to accurately assess the pathogenicity of HSCR-associated variants rather than relying solely on bioinformatics predictions, which could be refined by incorporating functional data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信