Kamini Velhal, Parvindar M Sah, Harshala S Naik, Rajesh Raut, Smitali Patil, Ramesh Yamgar, Jaya Lakkakula, Imran Uddin
{"title":"Synergistic Nanoformulation: Streamlined One-Pot Synthesis Enhances Paclitaxel Functionalization Gold Nanoparticles for Potent Anticancer Activity.","authors":"Kamini Velhal, Parvindar M Sah, Harshala S Naik, Rajesh Raut, Smitali Patil, Ramesh Yamgar, Jaya Lakkakula, Imran Uddin","doi":"10.1007/s12013-025-01701-w","DOIUrl":null,"url":null,"abstract":"<p><p>The development of innovative, eco-friendly methods for synthesizing functional nanoparticles is crucial in advancing cancer therapeutics. This study highlights a one-pot in situ synthesis of paclitaxel-functionalized gold nanoparticles (PTX-AuNPs), with paclitaxel serving as both the reducing and stabilizing agent. The synthesis process was validated using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (FEG-TEM). High-performance liquid chromatography (HPLC) confirmed the purity and structural integrity of paclitaxel before and after synthesis. The resulting PTX-AuNPs exhibited potent anticancer activity against human cervical cancer (SiHa) and human colon cancer (HT-29) cell lines, with a significantly stronger effect on the HT-29 cell line. A concentration-dependent reduction in HT-29 cell growth was observed as nanoparticle concentrations increased from 10 µg/mL-20 µg/mL. Molecular docking studies further demonstrated paclitaxel's strong binding affinity (-8.5 kcal/mol) to β-Tubulin, elucidating its anticancer mechanism. This cost-effective and environmentally friendly approach offers significant promise for enhancing cancer treatment strategies.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01701-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of innovative, eco-friendly methods for synthesizing functional nanoparticles is crucial in advancing cancer therapeutics. This study highlights a one-pot in situ synthesis of paclitaxel-functionalized gold nanoparticles (PTX-AuNPs), with paclitaxel serving as both the reducing and stabilizing agent. The synthesis process was validated using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (FEG-TEM). High-performance liquid chromatography (HPLC) confirmed the purity and structural integrity of paclitaxel before and after synthesis. The resulting PTX-AuNPs exhibited potent anticancer activity against human cervical cancer (SiHa) and human colon cancer (HT-29) cell lines, with a significantly stronger effect on the HT-29 cell line. A concentration-dependent reduction in HT-29 cell growth was observed as nanoparticle concentrations increased from 10 µg/mL-20 µg/mL. Molecular docking studies further demonstrated paclitaxel's strong binding affinity (-8.5 kcal/mol) to β-Tubulin, elucidating its anticancer mechanism. This cost-effective and environmentally friendly approach offers significant promise for enhancing cancer treatment strategies.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.