Lei Wang, Mengting Huang, Jinyan Zhang, Yun Han, Xuan Liu, Ying Chen, Helong Wu, Xiaodong Qian, Aijun Du, Xin Wang
{"title":"Turn the Harm into A Benefit: Axial Cl Adsorption on Curved Fe-N4 Single Sites for Boosted Oxygen Reduction Reaction in Seawater","authors":"Lei Wang, Mengting Huang, Jinyan Zhang, Yun Han, Xuan Liu, Ying Chen, Helong Wu, Xiaodong Qian, Aijun Du, Xin Wang","doi":"10.1002/smll.202411191","DOIUrl":null,"url":null,"abstract":"<p>Seawater electrocatalysis is urgently needed for various energy storage and conversion systems. However, the adsorption of chloride ions (Cl<sup>−</sup>) to the active sites can degrade the oxygen reduction reaction (ORR) activity and stability, thus reducing the catalytic performance. In this paper, a curved FeN<sub>4</sub> single atomic structure is designed by utilizing curvature engineering, which can turns the harmful Cl adsorption into a benefit on the Fe single site that changes the rate determining step of ORR and reduces the overall energy barrier according to density functional theory (DFT) calculation. Experimental studies reveal the prepared highly-curved single-atom iron catalyst (HC-Fe<sub>SA</sub>) exhibits excellent ORR activity in different electrolytes, with half-wave potentials of 0.90 V in 0.1 M KOH, 0.90 V in simulated seawater, and 0.75 V in natural seawater, respectively. This work opens up an avenue for the synthesis of high-performance seawater-based single-atom ORR catalysts through regulating the local atomic curvature.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 12","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411191","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater electrocatalysis is urgently needed for various energy storage and conversion systems. However, the adsorption of chloride ions (Cl−) to the active sites can degrade the oxygen reduction reaction (ORR) activity and stability, thus reducing the catalytic performance. In this paper, a curved FeN4 single atomic structure is designed by utilizing curvature engineering, which can turns the harmful Cl adsorption into a benefit on the Fe single site that changes the rate determining step of ORR and reduces the overall energy barrier according to density functional theory (DFT) calculation. Experimental studies reveal the prepared highly-curved single-atom iron catalyst (HC-FeSA) exhibits excellent ORR activity in different electrolytes, with half-wave potentials of 0.90 V in 0.1 M KOH, 0.90 V in simulated seawater, and 0.75 V in natural seawater, respectively. This work opens up an avenue for the synthesis of high-performance seawater-based single-atom ORR catalysts through regulating the local atomic curvature.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.