Christina Möller, Henrik Terholsen, Ole Schmöker, Thi Linh Anne Lê, Jan Wesche, Paula Schmiade, Esther Eppendorfer, Niklas Rimkus, Britta Girbardt, Dominique Böttcher, Gottfried J Palm, Jens Hoppen, Michael Lammers, Andreas Greinacher, Konstanze Aurich, Uwe T Bornscheuer
{"title":"Identification and Protein Engineering of Galactosidases for the Conversion of Blood Type B to Blood Type O.","authors":"Christina Möller, Henrik Terholsen, Ole Schmöker, Thi Linh Anne Lê, Jan Wesche, Paula Schmiade, Esther Eppendorfer, Niklas Rimkus, Britta Girbardt, Dominique Böttcher, Gottfried J Palm, Jens Hoppen, Michael Lammers, Andreas Greinacher, Konstanze Aurich, Uwe T Bornscheuer","doi":"10.1002/cbic.202500072","DOIUrl":null,"url":null,"abstract":"<p><p>The supply of blood products such as red blood cells poses a challenge due to rising demand and declining donor numbers. Careful matching of blood products of different types is required. Only type O of the blood types A, B, AB and O can be received by any patient without transfusion incompatibilities. Therefore, O-type blood can be considered \"universal blood\" and is especially needed in emergency situations. In this study, we focused on the conversion of the B antigen by enzymatic deglycosylation to generate the H antigen determining O-type blood. For this, we characterized several previously unstudied α-1,3-galactosidases belonging to the GH110 family. Our findings revealed that the α-1,3-galactosidase from Pedobacter panaciterrae (PpaGal) exhibits superior efficiency compared to previously described galactosidases. We further increased the activity of PpaGal by 2.5-fold using site-directed mutagenesis. Moreover, we solved two crystal structures of PpaGal, one in the apo-state and another in complex with d-galactose. The combination of our mutagenesis study with the solved crystal structures provides valuable information to guide further optimization of PpaGal or other B antigen converting enzymes paving the way for the easier production of universal blood from B-type blood.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500072"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500072","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The supply of blood products such as red blood cells poses a challenge due to rising demand and declining donor numbers. Careful matching of blood products of different types is required. Only type O of the blood types A, B, AB and O can be received by any patient without transfusion incompatibilities. Therefore, O-type blood can be considered "universal blood" and is especially needed in emergency situations. In this study, we focused on the conversion of the B antigen by enzymatic deglycosylation to generate the H antigen determining O-type blood. For this, we characterized several previously unstudied α-1,3-galactosidases belonging to the GH110 family. Our findings revealed that the α-1,3-galactosidase from Pedobacter panaciterrae (PpaGal) exhibits superior efficiency compared to previously described galactosidases. We further increased the activity of PpaGal by 2.5-fold using site-directed mutagenesis. Moreover, we solved two crystal structures of PpaGal, one in the apo-state and another in complex with d-galactose. The combination of our mutagenesis study with the solved crystal structures provides valuable information to guide further optimization of PpaGal or other B antigen converting enzymes paving the way for the easier production of universal blood from B-type blood.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).