Quan Liu, An Li, Kaixuan Li, Zhiyuan Zhao, Luanluan Xue, Xiao Deng, Renxuan Yuan, Wei Fang, Rujun Li, Yanlin Song, Huizeng Li
{"title":"Printing Multi-Layered Functional Devices Using One Stamp with Programmable Surface Energy.","authors":"Quan Liu, An Li, Kaixuan Li, Zhiyuan Zhao, Luanluan Xue, Xiao Deng, Renxuan Yuan, Wei Fang, Rujun Li, Yanlin Song, Huizeng Li","doi":"10.1002/adma.202413819","DOIUrl":null,"url":null,"abstract":"<p><p>Beyond its role in cultural communication, printing technology has emerged as one of the most important approaches to distributing and patterning functional materials for advanced manufacturing. In a printing process, a stamp is employed to transfer functional inks to a target surface, generating a specific pattern that exactly replicates the stamp. Through precise manipulation of different inkdrops, herein, a \"one stamp, diverse patterns\" printing strategy is developed and achieves deposition of varied patterns utilizing a single stamp. This stamp features patterned surface energy, achieved through regioselective energy injection treatment of an ultralow surface energy solid. It is revealed that inks with different surface tensions can selectively exhibit Cassie or Wenzel state on the stamp to generate diverse ink distributions, which enables the printing of distinct patterns on target surfaces. Leveraging this approach, flexible light-emitting devices and high-density transistor array are successfully printed using single stamps. These findings advance the understanding of finely tuning and patterning surface energy for precise liquid manipulation and offer a leap forward in efficient and versatile printing methodology that will boost the innovative integration of functional materials in a simplified manner.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2413819"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413819","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Beyond its role in cultural communication, printing technology has emerged as one of the most important approaches to distributing and patterning functional materials for advanced manufacturing. In a printing process, a stamp is employed to transfer functional inks to a target surface, generating a specific pattern that exactly replicates the stamp. Through precise manipulation of different inkdrops, herein, a "one stamp, diverse patterns" printing strategy is developed and achieves deposition of varied patterns utilizing a single stamp. This stamp features patterned surface energy, achieved through regioselective energy injection treatment of an ultralow surface energy solid. It is revealed that inks with different surface tensions can selectively exhibit Cassie or Wenzel state on the stamp to generate diverse ink distributions, which enables the printing of distinct patterns on target surfaces. Leveraging this approach, flexible light-emitting devices and high-density transistor array are successfully printed using single stamps. These findings advance the understanding of finely tuning and patterning surface energy for precise liquid manipulation and offer a leap forward in efficient and versatile printing methodology that will boost the innovative integration of functional materials in a simplified manner.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.