Single-Molecule Imaging of Wood Xylans on Surfaces and Their Interaction with GH11 Xylanase.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomacromolecules Pub Date : 2025-03-10 Epub Date: 2025-02-27 DOI:10.1021/acs.biomac.4c01446
Jana B Schaubeder, Christian Ganser, Chonnipa Palasingh, Manuel Eibinger, Tiina Nypelö, Takayuki Uchihashi, Stefan Spirk
{"title":"Single-Molecule Imaging of Wood Xylans on Surfaces and Their Interaction with GH11 Xylanase.","authors":"Jana B Schaubeder, Christian Ganser, Chonnipa Palasingh, Manuel Eibinger, Tiina Nypelö, Takayuki Uchihashi, Stefan Spirk","doi":"10.1021/acs.biomac.4c01446","DOIUrl":null,"url":null,"abstract":"<p><p>The knowledge of the molecular properties and arrangements of biopolymers in both solid and solution state are essential in the design of sustainable materials and biomedicine as they are decisive for mechanical strength, flexibility, and biodegradability. However, the structure of most biopolymers at charged interfaces can vary considerably, and their time-dependent visualization in liquid-state still remains challenging. In this work, we employed high-speed atomic force microscopy (HS-AFM) to visualize single xylan macromolecules from alkali-extracted birch and beechwood. On negatively charged mica surfaces, they appeared as individual macromolecules but assembled into aggregates on 3-aminopropyltriethoxysilane (APTES) surfaces (AP-mica). Hence, we further investigated the susceptibility to enzymatic degradation using an endoxylanase, which showed that the individual xylan macromolecules remained intact, while larger assemblies on AP-mica degraded over time. We demonstrate that HS-AFM is a powerful tool for understanding the molecular properties and degradation mechanisms of biopolymers. Moreover, by identifying alignment-dependent binding sites, strategies can be developed to ensure the biodegradability of composite materials by intelligent interface design.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"1639-1646"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01446","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The knowledge of the molecular properties and arrangements of biopolymers in both solid and solution state are essential in the design of sustainable materials and biomedicine as they are decisive for mechanical strength, flexibility, and biodegradability. However, the structure of most biopolymers at charged interfaces can vary considerably, and their time-dependent visualization in liquid-state still remains challenging. In this work, we employed high-speed atomic force microscopy (HS-AFM) to visualize single xylan macromolecules from alkali-extracted birch and beechwood. On negatively charged mica surfaces, they appeared as individual macromolecules but assembled into aggregates on 3-aminopropyltriethoxysilane (APTES) surfaces (AP-mica). Hence, we further investigated the susceptibility to enzymatic degradation using an endoxylanase, which showed that the individual xylan macromolecules remained intact, while larger assemblies on AP-mica degraded over time. We demonstrate that HS-AFM is a powerful tool for understanding the molecular properties and degradation mechanisms of biopolymers. Moreover, by identifying alignment-dependent binding sites, strategies can be developed to ensure the biodegradability of composite materials by intelligent interface design.

木材表面木聚糖的单分子成像及其与GH11木聚糖酶的相互作用
生物聚合物在固体和溶液状态下的分子特性和排列在可持续材料和生物医学的设计中是必不可少的,因为它们对机械强度、柔韧性和生物降解性起着决定性的作用。然而,大多数生物聚合物在带电界面处的结构变化很大,它们在液态的时间依赖性可视化仍然具有挑战性。在这项工作中,我们使用高速原子力显微镜(HS-AFM)来观察碱提取桦木和山毛榉木中的单个木聚糖大分子。在带负电荷的云母表面,它们表现为单独的大分子,但在3-氨基丙基三乙氧基硅烷(APTES)表面(ap -云母)聚集成聚集体。因此,我们使用内木聚糖酶进一步研究了酶降解的敏感性,结果表明单个木聚糖大分子保持完整,而ap -云母上较大的组装随着时间的推移而降解。我们证明了HS-AFM是了解生物聚合物分子特性和降解机制的有力工具。此外,通过识别与排列相关的结合位点,可以制定策略,通过智能界面设计来确保复合材料的生物降解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信