{"title":"Operando Photoemission Imaging of the Energy Landscape from a 2D Material-Based Field-Effect Transistor.","authors":"Dario Mastrippolito, Mariarosa Cavallo, Davy Borowski, Erwan Bossavit, Clement Gureghian, Albin Colle, Tommaso Gemo, Adrien Khalili, Huichen Zhang, Ankita Ram, Erwan Dandeu, Sandrine Ithurria, Johan Biscaras, Pavel Dudin, Jean-Francois Dayen, José Avila, Emmanuel Lhuillier, Debora Pierucci","doi":"10.1021/acsnano.5c00256","DOIUrl":null,"url":null,"abstract":"<p><p>As the integration of transition metal dichalcogenides (TMDC) becomes more advanced for optoelectronics, it is increasingly relevant to develop tools that can correlate the structural properties of the materials with their electrical output. To do so, the determination of the electronic structure must go beyond the hypothesis that the properties of the pristine material remain unaffected after the device integration, which generates changes in the dielectric environment, including electric fields that are likely to renormalize the electronic spectrum. Here, we demonstrate that nanobeam photoemission spectroscopy is a well-suited tool to unveil the device energy landscape under operando conditions. Both the gate vertical field and the drain in-plane vectorial electric field can be determined with a sub-μm resolution. We provide a correlative description of a field-effect transistor to connect its bias-modified energy landscape with the transistor electrical output. The method appears highly suited to unveil how the actual geometry of the flake (thickness, edge effect, presence of structural defects, etc.) is driving the current flow within the device. Lastly, the method appears fully compatible with traditional device fabrication, therefore making it relevant for systematic rational optimization of TMDC-based electronic devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As the integration of transition metal dichalcogenides (TMDC) becomes more advanced for optoelectronics, it is increasingly relevant to develop tools that can correlate the structural properties of the materials with their electrical output. To do so, the determination of the electronic structure must go beyond the hypothesis that the properties of the pristine material remain unaffected after the device integration, which generates changes in the dielectric environment, including electric fields that are likely to renormalize the electronic spectrum. Here, we demonstrate that nanobeam photoemission spectroscopy is a well-suited tool to unveil the device energy landscape under operando conditions. Both the gate vertical field and the drain in-plane vectorial electric field can be determined with a sub-μm resolution. We provide a correlative description of a field-effect transistor to connect its bias-modified energy landscape with the transistor electrical output. The method appears highly suited to unveil how the actual geometry of the flake (thickness, edge effect, presence of structural defects, etc.) is driving the current flow within the device. Lastly, the method appears fully compatible with traditional device fabrication, therefore making it relevant for systematic rational optimization of TMDC-based electronic devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.