Yue Chen, Dan Xue, Di Huang, Xinying Li, Yuyou Duan, Bin Chen
{"title":"Biofabrication of Tunable 3D Hydrogel for Investigating the Matrix Stiffness Impact on Breast Cancer Chemotherapy Resistance.","authors":"Yue Chen, Dan Xue, Di Huang, Xinying Li, Yuyou Duan, Bin Chen","doi":"10.1021/acsbiomaterials.4c01636","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix stiffness is a key factor in breast cancer progression, but its impact on cell function and response to treatment is not fully understood. Here, we developed a stiffness-tunable hydrogel-based three-dimensional system that recapitulates the extracellular matrix and physiological properties of human breast cancer in vitro. Adjusting the ratio of GelMA to PEGDA in the hydrogel formulation enabled the fine-tuning of matrix stiffness across a range of 7 to 52 kPa. Utilizing this three-dimensional (3D) hydrogel platform for a breast cancer cell culture has enabled precise functional evaluations. Variations in matrix stiffness resulted in significant changes in the morphology of breast cancer cells after 2 weeks of incubation. The analysis of transcriptomic sequencing revealed that the 3D microenvironment significantly changed the expression of a wide panel of transcriptomic profiles of breast cancer cells in various matrix stiffness. Gene Ontology analysis further suggested that specific biological functions could potentially be linked to the magnitude of the matrix stiffness. According to our findings, extracellular matrix rigidity modulates the sensitivity of breast cancer cells to paclitaxel and adriamycin. Notably, the expression of ABCB1 and YAP1 genes may be upregulated in the 3D culture environment, potentially contributing to the increased drug resistance observed in breast cancer cells. This work aims to establish facile adjustable hydrogels to deepen insights into matrix rigidity effects on breast cancer cells within 3D microenvironments, highlighting the critical role of extracellular matrix stiffness in modulating cell-matrix interactions.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix stiffness is a key factor in breast cancer progression, but its impact on cell function and response to treatment is not fully understood. Here, we developed a stiffness-tunable hydrogel-based three-dimensional system that recapitulates the extracellular matrix and physiological properties of human breast cancer in vitro. Adjusting the ratio of GelMA to PEGDA in the hydrogel formulation enabled the fine-tuning of matrix stiffness across a range of 7 to 52 kPa. Utilizing this three-dimensional (3D) hydrogel platform for a breast cancer cell culture has enabled precise functional evaluations. Variations in matrix stiffness resulted in significant changes in the morphology of breast cancer cells after 2 weeks of incubation. The analysis of transcriptomic sequencing revealed that the 3D microenvironment significantly changed the expression of a wide panel of transcriptomic profiles of breast cancer cells in various matrix stiffness. Gene Ontology analysis further suggested that specific biological functions could potentially be linked to the magnitude of the matrix stiffness. According to our findings, extracellular matrix rigidity modulates the sensitivity of breast cancer cells to paclitaxel and adriamycin. Notably, the expression of ABCB1 and YAP1 genes may be upregulated in the 3D culture environment, potentially contributing to the increased drug resistance observed in breast cancer cells. This work aims to establish facile adjustable hydrogels to deepen insights into matrix rigidity effects on breast cancer cells within 3D microenvironments, highlighting the critical role of extracellular matrix stiffness in modulating cell-matrix interactions.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture