S. Kurita, Y. Miyoshi, S. Kasahara, S. Yokota, Y. Kasahara, S. Matsuda, A. Kumamoto, F. Tsuchiya, A. Matsuoka, T. Hori, K. Keika, M. Teramoto, K. Yamamoto, I. Shinohara
{"title":"Direct Evidence for Electron Pitch Angle Scattering Driven by Electrostatic Cyclotron Harmonic Waves","authors":"S. Kurita, Y. Miyoshi, S. Kasahara, S. Yokota, Y. Kasahara, S. Matsuda, A. Kumamoto, F. Tsuchiya, A. Matsuoka, T. Hori, K. Keika, M. Teramoto, K. Yamamoto, I. Shinohara","doi":"10.1029/2024GL113188","DOIUrl":null,"url":null,"abstract":"<p>Electrostatic Cyclotron Harmonic (ECH) waves have been considered a potential cause of pitch angle scattering of electrons in the energy range from a few hundred eV to tens of keV. Theoretical studies have suggested that scattering by ECH waves is enhanced at lower pitch angles near the loss cone. Due to the insufficient angular resolution of particle detectors, it has been a great challenge to reveal ECH-driven scattering based on electron measurements. This study reports on variations in electron pitch angle distributions associated with ECH wave activity observed by the Arase satellite. The variation is characterized by a decrease in fluxes near the loss cone, and energy and pitch angle dependence of the flux decrease is consistent with the region of enhanced pitch angle scattering rates predicted by the quasi-linear diffusion theory. This study provides direct evidence for energy-pitch angle dependence of pitch angle scattering driven by ECH waves.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113188","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113188","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrostatic Cyclotron Harmonic (ECH) waves have been considered a potential cause of pitch angle scattering of electrons in the energy range from a few hundred eV to tens of keV. Theoretical studies have suggested that scattering by ECH waves is enhanced at lower pitch angles near the loss cone. Due to the insufficient angular resolution of particle detectors, it has been a great challenge to reveal ECH-driven scattering based on electron measurements. This study reports on variations in electron pitch angle distributions associated with ECH wave activity observed by the Arase satellite. The variation is characterized by a decrease in fluxes near the loss cone, and energy and pitch angle dependence of the flux decrease is consistent with the region of enhanced pitch angle scattering rates predicted by the quasi-linear diffusion theory. This study provides direct evidence for energy-pitch angle dependence of pitch angle scattering driven by ECH waves.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.