Coincident/Simultaneous Observations of Stratospheric Concentric Gravity Waves and Concentric Traveling Ionospheric Disturbances Over the Continental U.S. in 2022

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Masaru Kogure, Jia Yue, Min-Yang Chou, Huixin Liu, Yuichi Otsuka, Cora E. Randall, Lars Hoffmann, Yuta Hozumi
{"title":"Coincident/Simultaneous Observations of Stratospheric Concentric Gravity Waves and Concentric Traveling Ionospheric Disturbances Over the Continental U.S. in 2022","authors":"Masaru Kogure,&nbsp;Jia Yue,&nbsp;Min-Yang Chou,&nbsp;Huixin Liu,&nbsp;Yuichi Otsuka,&nbsp;Cora E. Randall,&nbsp;Lars Hoffmann,&nbsp;Yuta Hozumi","doi":"10.1029/2024JA033429","DOIUrl":null,"url":null,"abstract":"<p>This study examines the seasonal distributions of simultaneous stratospheric concentric gravity waves (GWs) observed by the Atmospheric Infrared Sounders and concentric traveling ionospheric disturbances (TIDs) detected by the ground-based Global Navigation Satellite System Total Electron Content observations over the U.S. in 2022, to illustrate the mesoscale vertical coupling between the lower atmosphere and the ionosphere. We compared epicenters of GWs and TIDs in the stratosphere and ionosphere with tropospheric weather conditions and background winds in the thermosphere. Epicenters of concentric TIDs associated with stratospheric concentric GWs correspond to areas with high convective available potential energy over the central to eastern U.S. (∼60–110<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> $\\mathit{{}^{\\circ}}$</annotation>\n </semantics></math>W) in summer and over the southern U.S. (south of ∼40<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n <mi>N</mi>\n </mrow>\n <annotation> $\\mathit{{}^{\\circ}}\\mathrm{N}$</annotation>\n </semantics></math>) in spring and fall. Conversely, in fall to spring, epicenters over the northern U.S. (north of ∼40<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n <mi>N</mi>\n </mrow>\n <annotation> $\\mathit{{}^{\\circ}}\\mathrm{N}$</annotation>\n </semantics></math>) appeared south of regions with high extratropical cyclone activity. These findings suggest that convection was a primary source of concentric GWs driving TIDs over the continental U.S. during all four seasons, although the specific weather phenomena associated with the convection varied by season. Convection over the central to eastern U.S. in summer and the southern U.S. in spring could be linked to thunderstorms. In contrast, convection over the northern U.S. from fall through spring was likely linked to extratropical cyclones. We also found that concentric TIDs were linked to 66% of the stratospheric concentric GW events (195 events in total), underscoring the significant role of convection as a source of TIDs in the lower atmosphere and its contribution to the vertical coupling.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033429","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033429","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the seasonal distributions of simultaneous stratospheric concentric gravity waves (GWs) observed by the Atmospheric Infrared Sounders and concentric traveling ionospheric disturbances (TIDs) detected by the ground-based Global Navigation Satellite System Total Electron Content observations over the U.S. in 2022, to illustrate the mesoscale vertical coupling between the lower atmosphere and the ionosphere. We compared epicenters of GWs and TIDs in the stratosphere and ionosphere with tropospheric weather conditions and background winds in the thermosphere. Epicenters of concentric TIDs associated with stratospheric concentric GWs correspond to areas with high convective available potential energy over the central to eastern U.S. (∼60–110 ° $\mathit{{}^{\circ}}$ W) in summer and over the southern U.S. (south of ∼40 ° N $\mathit{{}^{\circ}}\mathrm{N}$ ) in spring and fall. Conversely, in fall to spring, epicenters over the northern U.S. (north of ∼40 ° N $\mathit{{}^{\circ}}\mathrm{N}$ ) appeared south of regions with high extratropical cyclone activity. These findings suggest that convection was a primary source of concentric GWs driving TIDs over the continental U.S. during all four seasons, although the specific weather phenomena associated with the convection varied by season. Convection over the central to eastern U.S. in summer and the southern U.S. in spring could be linked to thunderstorms. In contrast, convection over the northern U.S. from fall through spring was likely linked to extratropical cyclones. We also found that concentric TIDs were linked to 66% of the stratospheric concentric GW events (195 events in total), underscoring the significant role of convection as a source of TIDs in the lower atmosphere and its contribution to the vertical coupling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信