Assessing the Sustainability of Wooden Wind Turbine Blades and Towers Compared to Conventional Designs

Alberto Boretti
{"title":"Assessing the Sustainability of Wooden Wind Turbine Blades and Towers Compared to Conventional Designs","authors":"Alberto Boretti","doi":"10.1002/appl.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study evaluates the environmental sustainability of wooden wind turbine blades and towers in comparison to conventional materials, focusing on lifecycle CO2 emissions, production energy, and recyclability. By analyzing components made from laminated veneer lumber, the assessment reveals that wooden blades can reduce CO<sub>2</sub> emissions by as much as 80% relative to traditional fiberglass and epoxy designs. Wooden towers, designed in modular segments, exhibit up to a 66% reduction in lifecycle emissions when compared to steel towers, along with improved transport and assembly efficiencies. These findings highlight the potential for wood-based turbine components to advance sustainable energy through reduced environmental impact and the use of renewable resources, offering a promising alternative in the transition to eco-friendly energy infrastructure.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the environmental sustainability of wooden wind turbine blades and towers in comparison to conventional materials, focusing on lifecycle CO2 emissions, production energy, and recyclability. By analyzing components made from laminated veneer lumber, the assessment reveals that wooden blades can reduce CO2 emissions by as much as 80% relative to traditional fiberglass and epoxy designs. Wooden towers, designed in modular segments, exhibit up to a 66% reduction in lifecycle emissions when compared to steel towers, along with improved transport and assembly efficiencies. These findings highlight the potential for wood-based turbine components to advance sustainable energy through reduced environmental impact and the use of renewable resources, offering a promising alternative in the transition to eco-friendly energy infrastructure.

Abstract Image

与传统设计相比,木质风力涡轮机叶片和塔的可持续性评估
与传统材料相比,本研究评估了木制风力涡轮机叶片和塔的环境可持续性,重点关注生命周期的二氧化碳排放、生产能源和可回收性。通过分析由层压单板木材制成的组件,评估显示,与传统的玻璃纤维和环氧树脂设计相比,木制刀片可以减少多达80%的二氧化碳排放。木塔采用模块化设计,与钢塔相比,其生命周期排放量减少了66%,同时还提高了运输和装配效率。这些发现强调了木质涡轮机组件通过减少对环境的影响和使用可再生资源来促进可持续能源的潜力,为向环保能源基础设施过渡提供了一个有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信