Pseudomonas Species Isolated From Lotus Nodules Are Genetically Diverse and Promote Plant Growth

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Yu-Hsiang Yu, Julian Kurtenbach, Duncan Crosbie, Andreas Brachmann, Macarena Marín Arancibia
{"title":"Pseudomonas Species Isolated From Lotus Nodules Are Genetically Diverse and Promote Plant Growth","authors":"Yu-Hsiang Yu,&nbsp;Julian Kurtenbach,&nbsp;Duncan Crosbie,&nbsp;Andreas Brachmann,&nbsp;Macarena Marín Arancibia","doi":"10.1111/1462-2920.70066","DOIUrl":null,"url":null,"abstract":"<p>Nodules harbour microbial communities composed of rhizobia and other lower-abundance bacteria. These non-rhizobial bacteria can promote plant growth. However, their genomic diversity and how this relates to their plant growth-promoting traits remain poorly investigated. Here, we isolated 14 <i>Pseudomonas</i> strains from the nodules of <i>Lotus</i> plants, sequenced their genomes, analysed their genomic and phylogenetic diversity, and assessed their ability to promote plant growth. We identified five distinct species, including a novel species named <i>Pseudomonas monachiensis</i> sp. nov., with strain PLb12A<sup>T</sup>, as the type strain. Genome analysis of these nodule-isolated <i>Pseudomonas</i> revealed an abundance of genes associated to plant growth-promoting traits, especially auxin-related genes, compared to closely related type strains. In accordance, most nodule-isolated <i>Pseudomonas</i> strains enhanced shoot growth of <i>Lotus burttii</i>, while only some promoted root growth or early onset of root hair proliferation. However, none of the strains significantly affected the ability to form nodules. Overall, our findings highlight the genotypic diversity and the plant growth-promoting potential of nodule-isolated <i>Pseudomonas</i> and underscore their possible applications in mixed inocula with rhizobia.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nodules harbour microbial communities composed of rhizobia and other lower-abundance bacteria. These non-rhizobial bacteria can promote plant growth. However, their genomic diversity and how this relates to their plant growth-promoting traits remain poorly investigated. Here, we isolated 14 Pseudomonas strains from the nodules of Lotus plants, sequenced their genomes, analysed their genomic and phylogenetic diversity, and assessed their ability to promote plant growth. We identified five distinct species, including a novel species named Pseudomonas monachiensis sp. nov., with strain PLb12AT, as the type strain. Genome analysis of these nodule-isolated Pseudomonas revealed an abundance of genes associated to plant growth-promoting traits, especially auxin-related genes, compared to closely related type strains. In accordance, most nodule-isolated Pseudomonas strains enhanced shoot growth of Lotus burttii, while only some promoted root growth or early onset of root hair proliferation. However, none of the strains significantly affected the ability to form nodules. Overall, our findings highlight the genotypic diversity and the plant growth-promoting potential of nodule-isolated Pseudomonas and underscore their possible applications in mixed inocula with rhizobia.

Abstract Image

从莲节中分离的假单胞菌具有遗传多样性并促进植物生长
根瘤含有由根瘤菌和其他低丰度细菌组成的微生物群落。这些非根瘤菌可以促进植物生长。然而,它们的基因组多样性及其与植物生长促进性状的关系仍未得到充分研究。本研究从荷花根瘤中分离出14株假单胞菌,对其基因组进行测序,分析其基因组和系统发育多样性,并评估其促进植物生长的能力。我们鉴定出5种不同的菌株,包括一种名为monachiensis sp. nov.的新种,菌株PLb12AT为型菌株。对这些结核分离假单胞菌的基因组分析显示,与密切相关的类型菌株相比,这些假单胞菌具有丰富的植物生长促进性状相关基因,特别是生长素相关基因。结果表明,大部分结核分离假单胞菌株促进了荷花茎部的生长,只有部分菌株促进了荷花根的生长或根毛增生的提早发生。然而,没有一种菌株显著影响结核的形成能力。总之,我们的研究结果强调了结核分离假单胞菌的基因型多样性和促进植物生长的潜力,并强调了它们在与根瘤菌混合接种中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信