{"title":"Using a Magnetohydrodynamic (MHD) Model to Simulate the Magnetospheric Response to a Kinetic Foreshock Transient","authors":"D. G. Sibeck, L. Rastätter, M. El Alaoui","doi":"10.1029/2024GL113463","DOIUrl":null,"url":null,"abstract":"<p>A global magnetohydrodynamic model predicts the response of the magnetosphere to the passage of a foreshock transient. We simulate the transient as an antisunward- and dawnward-moving slab of hot tenuous solar wind plasma and weak magnetic field strengths on magnetic field lines connected to the bow shock. The slab elicits large-amplitude outward bow shock motion with a stronger jump in plasma and magnetic field parameters on the trailing than the leading edges of this motion. The outward bulge in the bow shock bounds a magnetosheath region containing a hot tenuous plasma with weakened magnetic field strengths and flows deflected away from the Sun-earth line. The magnetopause bulges outward into this magnetosheath region to distances beyond the nominal bow shock. Despite the large amplitude magnetopause motion, perturbations at geosynchronous orbit are miniscule. Model predictions compare well to the observed characteristics of foreshock transients and their effects on the magnetosphere.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113463","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113463","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A global magnetohydrodynamic model predicts the response of the magnetosphere to the passage of a foreshock transient. We simulate the transient as an antisunward- and dawnward-moving slab of hot tenuous solar wind plasma and weak magnetic field strengths on magnetic field lines connected to the bow shock. The slab elicits large-amplitude outward bow shock motion with a stronger jump in plasma and magnetic field parameters on the trailing than the leading edges of this motion. The outward bulge in the bow shock bounds a magnetosheath region containing a hot tenuous plasma with weakened magnetic field strengths and flows deflected away from the Sun-earth line. The magnetopause bulges outward into this magnetosheath region to distances beyond the nominal bow shock. Despite the large amplitude magnetopause motion, perturbations at geosynchronous orbit are miniscule. Model predictions compare well to the observed characteristics of foreshock transients and their effects on the magnetosphere.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.