Antonio Bracale, Pierluigi Caramia, Pasquale De Falco, Luigi Pio Di Noia, Renato Rizzo
{"title":"Hierarchical energy profile characterization of electric vehicle charging stations integrated with photovoltaic systems based on clustering techniques","authors":"Antonio Bracale, Pierluigi Caramia, Pasquale De Falco, Luigi Pio Di Noia, Renato Rizzo","doi":"10.1049/rpg2.70006","DOIUrl":null,"url":null,"abstract":"<p>Secondary and primary substations of networks with electric vehicle (EV) chargers and photovoltaics (PVs) experience net loads characterized by uncertainty. Accurate characterization of EV, PV and net load energy profiles is necessary to plan new installations and to develop forecasting methodologies. This paper provides a novel contribution to the energy profile characterization of EVs and PVs, exploiting clustering techniques in a hierarchical framework to eventually characterize the overall net load profiles. In the proposal, the lower levels of the hierarchy identify clusters of EV load and PV generation profiles at individual installations, alternatively using one clustering technique among DBSCAN, Gaussian mixture models (GMMs), K-means algorithm (KMA), and spectral clustering (SC). The intermediate levels of the hierarchy reconstruct the overall EV load and PV generation profiles through a proposed frequentist combination of the lower-level profiles. The upper level of the hierarchy characterizes the overall net load through a novel approach based on the quantile convolution of the intermediate-level EV and PV profiles. Real EV load and PV generation data are used to evaluate the performance of the presented hierarchical methodology, with relative fitting improvements between 1% and 8% (compared to a two-level hierarchical benchmark) and between 16% and 29% (compared to a direct, non-hierarchical benchmark).</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary and primary substations of networks with electric vehicle (EV) chargers and photovoltaics (PVs) experience net loads characterized by uncertainty. Accurate characterization of EV, PV and net load energy profiles is necessary to plan new installations and to develop forecasting methodologies. This paper provides a novel contribution to the energy profile characterization of EVs and PVs, exploiting clustering techniques in a hierarchical framework to eventually characterize the overall net load profiles. In the proposal, the lower levels of the hierarchy identify clusters of EV load and PV generation profiles at individual installations, alternatively using one clustering technique among DBSCAN, Gaussian mixture models (GMMs), K-means algorithm (KMA), and spectral clustering (SC). The intermediate levels of the hierarchy reconstruct the overall EV load and PV generation profiles through a proposed frequentist combination of the lower-level profiles. The upper level of the hierarchy characterizes the overall net load through a novel approach based on the quantile convolution of the intermediate-level EV and PV profiles. Real EV load and PV generation data are used to evaluate the performance of the presented hierarchical methodology, with relative fitting improvements between 1% and 8% (compared to a two-level hierarchical benchmark) and between 16% and 29% (compared to a direct, non-hierarchical benchmark).
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf