Willmore-type inequality in unbounded convex sets

IF 1 2区 数学 Q1 MATHEMATICS
Xiaohan Jia, Guofang Wang, Chao Xia, Xuwen Zhang
{"title":"Willmore-type inequality in unbounded convex sets","authors":"Xiaohan Jia,&nbsp;Guofang Wang,&nbsp;Chao Xia,&nbsp;Xuwen Zhang","doi":"10.1112/jlms.70105","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the following Willmore-type inequality: on an unbounded closed convex set <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$K\\subset \\mathbb {R}^{n+1}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$(n\\geqslant 2$</annotation>\n </semantics></math>), for any embedded hypersurface <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mo>⊂</mo>\n <mi>K</mi>\n </mrow>\n <annotation>${\\Sigma }\\subset K$</annotation>\n </semantics></math> with boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n <mo>⊂</mo>\n <mi>∂</mi>\n <mi>K</mi>\n </mrow>\n <annotation>$\\partial {\\Sigma }\\subset \\partial K$</annotation>\n </semantics></math> satisfying a certain contact angle condition, there holds\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the following Willmore-type inequality: on an unbounded closed convex set K R n + 1 $K\subset \mathbb {R}^{n+1}$ ( n 2 $(n\geqslant 2$ ), for any embedded hypersurface Σ K ${\Sigma }\subset K$ with boundary Σ K $\partial {\Sigma }\subset \partial K$ satisfying a certain contact angle condition, there holds

Abstract Image

无界凸集中的willmore型不等式
在本文中,我们证明了以下willmore型不等式:在无界闭合凸集K∧R n + 1 $K\subset \mathbb {R}^{n+1}$ (n小于或等于2)上$(n\geqslant 2$),对于边界∂Σ∧∂K $\partial {\Sigma }\subset \partial K$满足一定接触角条件的任何嵌入超曲面Σ∧K ${\Sigma }\subset K$,有成立
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信