Highly Selective Conversion of CO2 to C2H6 by Photocatalytic Reduction with NiAl–Layered Double Hydroxides/Bi2Sn2O7–Ov/CuO–Ov Double Oxygen Vacancy Photocatalyst
{"title":"Highly Selective Conversion of CO2 to C2H6 by Photocatalytic Reduction with NiAl–Layered Double Hydroxides/Bi2Sn2O7–Ov/CuO–Ov Double Oxygen Vacancy Photocatalyst","authors":"Sheng-hui Guo, Rui-tang Guo, Zhen-rui Zhang, Ling-qi Yu, Ji-song Yan, Hao Liu","doi":"10.1002/solr.202400820","DOIUrl":null,"url":null,"abstract":"<p>\nPhotocatalytic CO<sub>2</sub> reduction is the use of solar energy to catalyze the conversion of CO<sub>2</sub> into a fuel with added value, and it is an effective way to reuse CO<sub>2</sub> to achieve carbon neutrality. In this study, NiAl–layered double hydroxides (LDH)/Bi<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>–Ov/CuO–Ov composites with double oxygen vacancies are successfully prepared, and the effects of different component contents are investigated. The main products of the best sample NiAl–LDH/BSOv-40/CuOv-20 are carbon monoxide, methane, and ethane with yields of 29.95, 18.46, and 32.13 μmol g<sup>−1</sup> h<sup>−1</sup>, respectively, and a selectivity of 68.15% for the C<sub>2</sub>H<sub>6</sub> product. The evolutionary pathway and photocatalytic mechanism of CO<sub>2</sub> are investigated by in situ Fourier transform infrared spectroscopy and theoretical calculations. In this work, the scope of application of oxygen vacancy catalysts for C<sub>2</sub> production in the field of photocatalysis is broadened.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 4","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400820","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic CO2 reduction is the use of solar energy to catalyze the conversion of CO2 into a fuel with added value, and it is an effective way to reuse CO2 to achieve carbon neutrality. In this study, NiAl–layered double hydroxides (LDH)/Bi2Sn2O7–Ov/CuO–Ov composites with double oxygen vacancies are successfully prepared, and the effects of different component contents are investigated. The main products of the best sample NiAl–LDH/BSOv-40/CuOv-20 are carbon monoxide, methane, and ethane with yields of 29.95, 18.46, and 32.13 μmol g−1 h−1, respectively, and a selectivity of 68.15% for the C2H6 product. The evolutionary pathway and photocatalytic mechanism of CO2 are investigated by in situ Fourier transform infrared spectroscopy and theoretical calculations. In this work, the scope of application of oxygen vacancy catalysts for C2 production in the field of photocatalysis is broadened.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.