Dina Castillo Boukhchtaber, F. A. Bastiaan von Meijenfeldt, Diana X. Sahonero Canavesi, Denise Dorhout, Nicole J. Bale, Ellen C. Hopmans, Laura Villanueva
{"title":"Discovering Hidden Archaeal and Bacterial Lipid Producers in a Euxinic Marine System","authors":"Dina Castillo Boukhchtaber, F. A. Bastiaan von Meijenfeldt, Diana X. Sahonero Canavesi, Denise Dorhout, Nicole J. Bale, Ellen C. Hopmans, Laura Villanueva","doi":"10.1111/1462-2920.70054","DOIUrl":null,"url":null,"abstract":"<p>Bacterial membrane lipids are typically characterised by fatty acid bilayers linked through ester bonds, whereas those of Archaea are characterised by ether-linked isoprenoids forming bilayers or monolayers of membrane-spanning lipids known as isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs). However, this understanding has been reconsidered with the identification of branched GDGTs (brGDGTs), which are membrane-spanning ether-bound branched alkyl fatty acids of bacterial origin, though their producers are often unidentified. The limited availability of microbial cultures constrains the understanding of the biological sources of these membrane lipids, thus limiting their use as biomarkers. To address this issue, we identified membrane lipids in the Black Sea using high-resolution accurate mass/mass spectrometry and inferred their potential producers by targeting lipid biosynthetic pathways encoded on the metagenome, in metagenome-assembled genomes and unbinned scaffolds. We also identified brGDGTs and highly branched GDGTs in the suboxic and euxinic waters, potentially attributed to Planctomycetota, Cloacimonadota, Desulfobacterota, Chloroflexota, Actinobacteria and Myxococcota—based on their lipid biosynthetic genomic potential. These findings introduce new possibilities for using specific brGDGTs as biomarkers of anoxic conditions in marine environments and highlight the role of these membrane lipids in microbial adaptation.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70054","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial membrane lipids are typically characterised by fatty acid bilayers linked through ester bonds, whereas those of Archaea are characterised by ether-linked isoprenoids forming bilayers or monolayers of membrane-spanning lipids known as isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs). However, this understanding has been reconsidered with the identification of branched GDGTs (brGDGTs), which are membrane-spanning ether-bound branched alkyl fatty acids of bacterial origin, though their producers are often unidentified. The limited availability of microbial cultures constrains the understanding of the biological sources of these membrane lipids, thus limiting their use as biomarkers. To address this issue, we identified membrane lipids in the Black Sea using high-resolution accurate mass/mass spectrometry and inferred their potential producers by targeting lipid biosynthetic pathways encoded on the metagenome, in metagenome-assembled genomes and unbinned scaffolds. We also identified brGDGTs and highly branched GDGTs in the suboxic and euxinic waters, potentially attributed to Planctomycetota, Cloacimonadota, Desulfobacterota, Chloroflexota, Actinobacteria and Myxococcota—based on their lipid biosynthetic genomic potential. These findings introduce new possibilities for using specific brGDGTs as biomarkers of anoxic conditions in marine environments and highlight the role of these membrane lipids in microbial adaptation.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens