Revisit the Gibbs-Thomson Equation Fitting of Poly(butylene succinate) Based on Oligomer Extended-Chain Crystals

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Na Li, Yu-Pei Tian, Tian-Yu Wu, Qiong Zhou, Hai-Mu Ye
{"title":"Revisit the Gibbs-Thomson Equation Fitting of Poly(butylene succinate) Based on Oligomer Extended-Chain Crystals","authors":"Na Li,&nbsp;Yu-Pei Tian,&nbsp;Tian-Yu Wu,&nbsp;Qiong Zhou,&nbsp;Hai-Mu Ye","doi":"10.1007/s10118-025-3270-5","DOIUrl":null,"url":null,"abstract":"<div><p>The equilibrium melting point (<i>T</i><sub>m</sub><sup>0</sup>) is a crucial thermodynamic parameter for characterizing the crystallization and melting behavior of semi-crystalline polymers. However, the direct measurement of <i>T</i><sub>m</sub><sup>0</sup> poses a significant challenge because of the difficulty in physically fabricating fully-extended chain crystals of high-molecular-weight polymers. Therefore, various extrapolation equations for <i>T</i><sub>m</sub><sup>0</sup> have been proposed that utilize the thermal properties of ordinary folded-chain lamellae. Among these, the Gibbs-Thomson equation is one of the most commonly employed for modeling. Despite its widespread use, there are notable variations in the <i>T</i><sub>m</sub><sup>0</sup> values obtained by different research groups, even when based on similar samples. This raises questions about the validity and accuracy of using the Gibbs-Thomson equation to linearly extrapolate <i>T</i><sub>m</sub><sup>0</sup>. In this study, we prepared a series of oligomer extended-chain crystals (ECCs) of poly(butylene succinate) (PBS) and used their properties for Gibbs-Thomson fitting. The results reveal a perfect linear relationship, with an extrapolated <i>T</i><sub>m</sub><sup>0</sup> value of 136.08 °C. The basal surface free energy of the oligomer ECCs was calculated as 0.084 J/m<sup>2</sup>, which is approximately twice that of folded-chain lamellae. This difference is attributed to the aggregation of highly mobile free tails on the crystal surface. The two structural features of oligomer ECCs—large thickness and fixed surface—better fulfill the conditions for applying the Gibbs-Thomson equation, ensuring its validity and accuracy. Therefore, we believe that the Gibbs-Thomson fit can produce reliable results when sufficient high-quality data are used.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 2","pages":"392 - 398"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3270-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The equilibrium melting point (Tm0) is a crucial thermodynamic parameter for characterizing the crystallization and melting behavior of semi-crystalline polymers. However, the direct measurement of Tm0 poses a significant challenge because of the difficulty in physically fabricating fully-extended chain crystals of high-molecular-weight polymers. Therefore, various extrapolation equations for Tm0 have been proposed that utilize the thermal properties of ordinary folded-chain lamellae. Among these, the Gibbs-Thomson equation is one of the most commonly employed for modeling. Despite its widespread use, there are notable variations in the Tm0 values obtained by different research groups, even when based on similar samples. This raises questions about the validity and accuracy of using the Gibbs-Thomson equation to linearly extrapolate Tm0. In this study, we prepared a series of oligomer extended-chain crystals (ECCs) of poly(butylene succinate) (PBS) and used their properties for Gibbs-Thomson fitting. The results reveal a perfect linear relationship, with an extrapolated Tm0 value of 136.08 °C. The basal surface free energy of the oligomer ECCs was calculated as 0.084 J/m2, which is approximately twice that of folded-chain lamellae. This difference is attributed to the aggregation of highly mobile free tails on the crystal surface. The two structural features of oligomer ECCs—large thickness and fixed surface—better fulfill the conditions for applying the Gibbs-Thomson equation, ensuring its validity and accuracy. Therefore, we believe that the Gibbs-Thomson fit can produce reliable results when sufficient high-quality data are used.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信