Noël Challamel, C. M. Wang, J. N. Reddy, S. A. Faghidian
{"title":"Equivalence between micromorphic, nonlocal gradient, and two-phase nonlocal beam theories","authors":"Noël Challamel, C. M. Wang, J. N. Reddy, S. A. Faghidian","doi":"10.1007/s00707-024-04180-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the potential to unify gradient and nonlocal elastic beam theories using strain- or stress-driven nonlocal frameworks, focusing on nonlocal Euler–Bernoulli beam kinematics. It presents a two-length-scale gradient/nonlocal beam model that connects bending moments to curvature through a two-scale differential law, derivable via strain- or stress-based variational principles. The strain-driven micromorphic, two-phase strain-driven nonlocal, and nonlocal strain gradient beam theories share identical governing equations and higher-order boundary conditions for normalized nonlocal kernels on finite beams. However, the positive nonlocal potential energy constrains each theory’s validity, depending on the length-scale ratio. The nonlocal strain gradient theory can encompass the others to ensure positive potential energy across varying length scales. Differences between the finite-beam exponential kernel model and the infinite-beam model are clarified; though governed by the same differential equation but each has unique higher-order boundary conditions. The interest of the theory based on a normalized kernel along the finite beam is highlighted on a pure bending test which preserves the uniform curvature field. Additionally, the stress-driven micromorphic, two-phase stress-driven nonlocal, and nonlocal stress gradient theories share the same governing equations and boundary conditions for finite-beam kernels. The study concludes that these theories—micromorphic, nonlocal gradient, and two-phase nonlocal—can be unified within strain- and stress-driven frameworks for specific nonlocal kernels.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 2","pages":"871 - 902"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04180-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the potential to unify gradient and nonlocal elastic beam theories using strain- or stress-driven nonlocal frameworks, focusing on nonlocal Euler–Bernoulli beam kinematics. It presents a two-length-scale gradient/nonlocal beam model that connects bending moments to curvature through a two-scale differential law, derivable via strain- or stress-based variational principles. The strain-driven micromorphic, two-phase strain-driven nonlocal, and nonlocal strain gradient beam theories share identical governing equations and higher-order boundary conditions for normalized nonlocal kernels on finite beams. However, the positive nonlocal potential energy constrains each theory’s validity, depending on the length-scale ratio. The nonlocal strain gradient theory can encompass the others to ensure positive potential energy across varying length scales. Differences between the finite-beam exponential kernel model and the infinite-beam model are clarified; though governed by the same differential equation but each has unique higher-order boundary conditions. The interest of the theory based on a normalized kernel along the finite beam is highlighted on a pure bending test which preserves the uniform curvature field. Additionally, the stress-driven micromorphic, two-phase stress-driven nonlocal, and nonlocal stress gradient theories share the same governing equations and boundary conditions for finite-beam kernels. The study concludes that these theories—micromorphic, nonlocal gradient, and two-phase nonlocal—can be unified within strain- and stress-driven frameworks for specific nonlocal kernels.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.