{"title":"Efficient Quantum Gibbs Samplers with Kubo–Martin–Schwinger Detailed Balance Condition","authors":"Zhiyan Ding, Bowen Li, Lin Lin","doi":"10.1007/s00220-025-05235-3","DOIUrl":null,"url":null,"abstract":"<div><p>Lindblad dynamics and other open-system dynamics provide a promising path towards efficient Gibbs sampling on quantum computers. In these proposals, the Lindbladian is obtained via an algorithmic construction akin to designing an artificial thermostat in classical Monte Carlo or molecular dynamics methods, rather than being treated as an approximation to weakly coupled system-bath unitary dynamics. Recently, Chen, Kastoryano, and Gilyén (arXiv:2311.09207) introduced the first efficiently implementable Lindbladian satisfying the Kubo–Martin–Schwinger (KMS) detailed balance condition, which ensures that the Gibbs state is a fixed point of the dynamics and is applicable to non-commuting Hamiltonians. This Gibbs sampler uses a continuously parameterized set of jump operators, and the energy resolution required for implementing each jump operator depends only logarithmically on the precision and the mixing time. In this work, we build upon the structural characterization of KMS detailed balanced Lindbladians by Fagnola and Umanità, and develop a family of efficient quantum Gibbs samplers using a finite set of jump operators (the number can be as few as one), akin to the classical Markov chain-based sampling algorithm. Compared to the existing works, our quantum Gibbs samplers have a comparable quantum simulation cost but with greater design flexibility and a much simpler implementation and error analysis. Moreover, it encompasses the construction of Chen, Kastoryano, and Gilyén as a special instance.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05235-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05235-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lindblad dynamics and other open-system dynamics provide a promising path towards efficient Gibbs sampling on quantum computers. In these proposals, the Lindbladian is obtained via an algorithmic construction akin to designing an artificial thermostat in classical Monte Carlo or molecular dynamics methods, rather than being treated as an approximation to weakly coupled system-bath unitary dynamics. Recently, Chen, Kastoryano, and Gilyén (arXiv:2311.09207) introduced the first efficiently implementable Lindbladian satisfying the Kubo–Martin–Schwinger (KMS) detailed balance condition, which ensures that the Gibbs state is a fixed point of the dynamics and is applicable to non-commuting Hamiltonians. This Gibbs sampler uses a continuously parameterized set of jump operators, and the energy resolution required for implementing each jump operator depends only logarithmically on the precision and the mixing time. In this work, we build upon the structural characterization of KMS detailed balanced Lindbladians by Fagnola and Umanità, and develop a family of efficient quantum Gibbs samplers using a finite set of jump operators (the number can be as few as one), akin to the classical Markov chain-based sampling algorithm. Compared to the existing works, our quantum Gibbs samplers have a comparable quantum simulation cost but with greater design flexibility and a much simpler implementation and error analysis. Moreover, it encompasses the construction of Chen, Kastoryano, and Gilyén as a special instance.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.