Free vibration analysis of sandwich cylindrical shells with functionally graded carbon nanotube-reinforced composite face sheets using the differential quadrature (DQ) method
Hadj Youzera, Sid Ahmed Meftah, Abdelouahed Tounsi, Mohamed Abdelaziz Salem, Khaled Mohamed Khedher, Murat Yaylacı
{"title":"Free vibration analysis of sandwich cylindrical shells with functionally graded carbon nanotube-reinforced composite face sheets using the differential quadrature (DQ) method","authors":"Hadj Youzera, Sid Ahmed Meftah, Abdelouahed Tounsi, Mohamed Abdelaziz Salem, Khaled Mohamed Khedher, Murat Yaylacı","doi":"10.1007/s00707-025-04230-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the free vibration behavior of cylindrical shell with a stiff core and functionally graded carbon nanotube-reinforced composite (FG-CNTRC) face sheets. Both uniformly distributed CNT reinforced (UD-CNT) and functionally graded CNT reinforced (FG-CNT) in the thickness direction are used to examine their impact on the vibration characteristics of sandwich cylindrical shells. The governing differential equations of motions are derived using Hamilton’s principle. These equations are solved using the differential quadrature (DQ) method to calculate the natural frequencies of the sandwich cylindrical shell. This approach allows for the consideration of various support configurations of the sandwich cylindrical beams. A comprehensive parametric study is performed to explore the influence of carbon nanotube volume fraction, core-to-face sheet thickness ratio, slenderness ratio, and end supports on the free vibration behavior of cylindrical shells with functionally graded carbon nanotube-reinforced composite (FG-CNTRC) face sheets. The results show that the effects of carbon nanotubes and other geometric factors significantly influence the dimensionless frequencies of the sandwich cylindrical shells.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 2","pages":"1395 - 1410"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04230-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the free vibration behavior of cylindrical shell with a stiff core and functionally graded carbon nanotube-reinforced composite (FG-CNTRC) face sheets. Both uniformly distributed CNT reinforced (UD-CNT) and functionally graded CNT reinforced (FG-CNT) in the thickness direction are used to examine their impact on the vibration characteristics of sandwich cylindrical shells. The governing differential equations of motions are derived using Hamilton’s principle. These equations are solved using the differential quadrature (DQ) method to calculate the natural frequencies of the sandwich cylindrical shell. This approach allows for the consideration of various support configurations of the sandwich cylindrical beams. A comprehensive parametric study is performed to explore the influence of carbon nanotube volume fraction, core-to-face sheet thickness ratio, slenderness ratio, and end supports on the free vibration behavior of cylindrical shells with functionally graded carbon nanotube-reinforced composite (FG-CNTRC) face sheets. The results show that the effects of carbon nanotubes and other geometric factors significantly influence the dimensionless frequencies of the sandwich cylindrical shells.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.