Deep transcriptome and metabolome analysis to dissect untapped spatial dynamics of specialized metabolism in Saussurea costus (Falc.) Lipsch

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY
Aasim Majeed, Romit Seth, Balraj Sharma, Amna Devi, Shikha Sharma, Mamta Masand, Mohammed Saba Rahim, Naveen Verma, Dinesh Kumar, Ram Kumar Sharma
{"title":"Deep transcriptome and metabolome analysis to dissect untapped spatial dynamics of specialized metabolism in Saussurea costus (Falc.) Lipsch","authors":"Aasim Majeed,&nbsp;Romit Seth,&nbsp;Balraj Sharma,&nbsp;Amna Devi,&nbsp;Shikha Sharma,&nbsp;Mamta Masand,&nbsp;Mohammed Saba Rahim,&nbsp;Naveen Verma,&nbsp;Dinesh Kumar,&nbsp;Ram Kumar Sharma","doi":"10.1007/s10142-025-01549-6","DOIUrl":null,"url":null,"abstract":"<div><p><i>Saussurea costus</i> (Falc.) is an endangered medicinal plant possessing diverse phytochemical compounds with clinical significance and used to treat numerous human ailments. Despite the source of enriched phytochemicals, molecular insights into spatialized metabolism are poorly understood in <i>S. costus</i>. This study investigated the dynamics of organ-specific secondary metabolite biosynthesis using deep transcriptome sequencing and high-throughput UHPLC-QTOF based untargeted metabolomic profiling. A <i>de novo</i> assembly from quality reads fetched 59,725 transcripts with structural (53.02%) and functional (66.13%) annotations of non-redundant transcripts. Of the 7,683 predicted gene families, 3,211 were categorized as ‘single gene families’. Interestingly, out of the 4,664 core gene families within the Asterids, 4,560 families were captured in <i>S. costus</i>. Organ-specific differential gene expression analysis revealed significant variations between leaves vs. stems (23,102 transcripts), leaves vs. roots (30,590 transcripts), and roots vs. stems (21,759 transcripts). Like-wise, putative metabolites (PMs) were recorded with significant differences in leaves vs. roots (250 PMs), leaves vs. stem (350 PMs), and roots vs. stem (107 PMs). The integrative transcriptomic and metabolomic analysis identified organ-specific differences in the accumulation of important metabolites, including secologanin, menthofuran, taraxerol, lupeol, acetyleugenol, scopoletin, costunolide, and dehydrocostus lactone. Furthermore, a global gene co-expression network (GCN) identified putative regulators controlling the expression of key target genes of secondary metabolite pathways including terpenoid, phenylpropanoid, and flavonoid. The comprehensive functionally relevant genomic resource created here provides beneficial insights for upscaling targeted metabolite biosynthesis through genetic engineering, and for expediting association mapping efforts to elucidate the casual genetic elements controlling specific bioactive metabolites.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01549-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Saussurea costus (Falc.) is an endangered medicinal plant possessing diverse phytochemical compounds with clinical significance and used to treat numerous human ailments. Despite the source of enriched phytochemicals, molecular insights into spatialized metabolism are poorly understood in S. costus. This study investigated the dynamics of organ-specific secondary metabolite biosynthesis using deep transcriptome sequencing and high-throughput UHPLC-QTOF based untargeted metabolomic profiling. A de novo assembly from quality reads fetched 59,725 transcripts with structural (53.02%) and functional (66.13%) annotations of non-redundant transcripts. Of the 7,683 predicted gene families, 3,211 were categorized as ‘single gene families’. Interestingly, out of the 4,664 core gene families within the Asterids, 4,560 families were captured in S. costus. Organ-specific differential gene expression analysis revealed significant variations between leaves vs. stems (23,102 transcripts), leaves vs. roots (30,590 transcripts), and roots vs. stems (21,759 transcripts). Like-wise, putative metabolites (PMs) were recorded with significant differences in leaves vs. roots (250 PMs), leaves vs. stem (350 PMs), and roots vs. stem (107 PMs). The integrative transcriptomic and metabolomic analysis identified organ-specific differences in the accumulation of important metabolites, including secologanin, menthofuran, taraxerol, lupeol, acetyleugenol, scopoletin, costunolide, and dehydrocostus lactone. Furthermore, a global gene co-expression network (GCN) identified putative regulators controlling the expression of key target genes of secondary metabolite pathways including terpenoid, phenylpropanoid, and flavonoid. The comprehensive functionally relevant genomic resource created here provides beneficial insights for upscaling targeted metabolite biosynthesis through genetic engineering, and for expediting association mapping efforts to elucidate the casual genetic elements controlling specific bioactive metabolites.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信