{"title":"Reflection of plane waves in a microelongated thermoelastic porous medium with Hall current under modified Green–Lindsay model","authors":"Komal Yadav, Devender Sheoran, Kapil Kumar Kalkal","doi":"10.1007/s00707-025-04222-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a model of two-dimensional problem of generalized thermoelasticity for a homogeneous, isotropic, microelongated thermoelastic medium with voids and Hall current is established. The enunciation is applied to generalized thermoelasticity theory based on modified Green–Lindsay model. Five coupled waves are found to exist in the medium, namely longitudinal displacement wave (PI), transverse displacement wave (PII), thermal wave (PT), microelongation wave (PM) and volume fraction wave (PV). In order to calculate reflection coefficients, appropriate boundary conditions are taken into account. The numerical calculations have been carried out with the use of MATLAB programming, and reflection coefficients and energy ratios for these reflected waves have been calculated. Graphical representations show how Hall parameters, voids and microelongation affect reflection coefficients and phase velocities. Comparisons are done between the results when certain parameters are present and absent. Variation of attenuation coefficients with frequency is also shown in a plot. Energy ratio expressions have been obtained in explicit form and are represented graphically as functions of incidence angle. It has been established that the sum of the energy ratios at each angle of incidence during the reflection phenomena equals unity. Existing findings are reduced as particular cases for the validation of this study.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 2","pages":"1359 - 1380"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04222-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a model of two-dimensional problem of generalized thermoelasticity for a homogeneous, isotropic, microelongated thermoelastic medium with voids and Hall current is established. The enunciation is applied to generalized thermoelasticity theory based on modified Green–Lindsay model. Five coupled waves are found to exist in the medium, namely longitudinal displacement wave (PI), transverse displacement wave (PII), thermal wave (PT), microelongation wave (PM) and volume fraction wave (PV). In order to calculate reflection coefficients, appropriate boundary conditions are taken into account. The numerical calculations have been carried out with the use of MATLAB programming, and reflection coefficients and energy ratios for these reflected waves have been calculated. Graphical representations show how Hall parameters, voids and microelongation affect reflection coefficients and phase velocities. Comparisons are done between the results when certain parameters are present and absent. Variation of attenuation coefficients with frequency is also shown in a plot. Energy ratio expressions have been obtained in explicit form and are represented graphically as functions of incidence angle. It has been established that the sum of the energy ratios at each angle of incidence during the reflection phenomena equals unity. Existing findings are reduced as particular cases for the validation of this study.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.