{"title":"Non-invertible Peccei-Quinn symmetry, natural 2HDM alignment, and the visible axion","authors":"Antonio Delgado, Seth Koren","doi":"10.1007/JHEP02(2025)178","DOIUrl":null,"url":null,"abstract":"<p>We identify <span>\\( {m}_{12}^2 \\)</span> as a spurion of non-invertible Peccei-Quinn symmetry in the type II 2HDM with gauged quark flavor. Thus a UV theory which introduces quark color-flavor monopoles can naturally realize alignment without decoupling and can furthermore revive the Weinberg-Wilczek axion. As an example we consider the SU(9) theory of color-flavor unification, which needs no new fermions. This is the first model-building use of non-invertible symmetry to find a Dirac natural explanation for a small <i>relevant</i> parameter.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)178.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)178","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We identify \( {m}_{12}^2 \) as a spurion of non-invertible Peccei-Quinn symmetry in the type II 2HDM with gauged quark flavor. Thus a UV theory which introduces quark color-flavor monopoles can naturally realize alignment without decoupling and can furthermore revive the Weinberg-Wilczek axion. As an example we consider the SU(9) theory of color-flavor unification, which needs no new fermions. This is the first model-building use of non-invertible symmetry to find a Dirac natural explanation for a small relevant parameter.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).